1,451 research outputs found
Bayesian analysis of the low-resolution polarized 3-year WMAP sky maps
We apply a previously developed Gibbs sampling framework to the foreground
corrected 3-yr WMAP polarization data and compute the power spectrum and
residual foreground template amplitude posterior distributions. We first
analyze the co-added Q- and V-band data, and compare our results to the
likelihood code published by the WMAP team. We find good agreement, and thus
verify the numerics and data processing steps of both approaches. However, we
also analyze the Q- and V-bands separately, allowing for non-zero EB
cross-correlations and including two individual foreground template amplitudes
tracing synchrotron and dust emission. In these analyses, we find tentative
evidence of systematics: The foreground tracers correlate with each of the Q-
and V-band sky maps individually, although not with the co-added QV map; there
is a noticeable negative EB cross-correlation at l <~ 16 in the V-band map; and
finally, when relaxing the constraints on EB and BB, noticeable differences are
observed between the marginalized band powers in the Q- and V-bands. Further
studies of these features are imperative, given the importance of the low-l EE
spectrum on the optical depth of reionization tau and the spectral index of
scalar perturbations n_s.Comment: 5 pages, 4 figures, submitted to ApJ
Optimal search strategies for hidden targets
What is the fastest way of finding a randomly hidden target? This question of
general relevance is of vital importance for foraging animals. Experimental
observations reveal that the search behaviour of foragers is generally
intermittent: active search phases randomly alternate with phases of fast
ballistic motion. In this letter, we study the efficiency of this type of two
states search strategies, by calculating analytically the mean first passage
time at the target. We model the perception mecanism involved in the active
search phase by a diffusive process. In this framework, we show that the search
strategy is optimal when the average duration of "motion phases" varies like
the power either 3/5 or 2/3 of the average duration of "search phases",
depending on the regime. This scaling accounts for experimental data over a
wide range of species, which suggests that the kinetics of search trajectories
is a determining factor optimized by foragers and that the perception activity
is adequately described by a diffusion process.Comment: 4 pages, 5 figures. to appear in Phys. Rev. Let
A re-analysis of the three-year WMAP temperature power spectrum and likelihood
We analyze the three-year WMAP temperature anisotropy data seeking to confirm
the power spectrum and likelihoods published by the WMAP team. We apply five
independent implementations of four algorithms to the power spectrum estimation
and two implementations to the parameter estimation. Our single most important
result is that we broadly confirm the WMAP power spectrum and analysis. Still,
we do find two small but potentially important discrepancies: On large angular
scales there is a small power excess in the WMAP spectrum (5-10% at l<~30)
primarily due to likelihood approximation issues between 13 <= l <~30. On small
angular scales there is a systematic difference between the V- and W-band
spectra (few percent at l>~300). Recently, the latter discrepancy was explained
by Huffenberger et al. (2006) in terms of over-subtraction of unresolved point
sources. As far as the low-l bias is concerned, most parameters are affected by
a few tenths of a sigma. The most important effect is seen in n_s. For the
combination of WMAP, Acbar and BOOMERanG, the significance of n_s =/ 1 drops
from ~2.7 sigma to ~2.3 sigma when correcting for this bias. We propose a few
simple improvements to the low-l WMAP likelihood code, and introduce two
important extensions to the Gibbs sampling method that allows for proper
sampling of the low signal-to-noise regime. Finally, we make the products from
the Gibbs sampling analysis publically available, thereby providing a fast and
simple route to the exact likelihood without the need of expensive matrix
inversions.Comment: 14 pages, 7 figures. Accepted for publication in ApJ. Numerical
results unchanged, but interpretation sharpened: Likelihood approximation
issues at l=13-30 far more important than potential foreground issues at l <=
12. Gibbs products (spectrum and sky samples, and "easy-to-use" likelihood
module) available from http://www.astro.uio.no/~hke/ under "Research
A large field CCD system for quantitative imaging of microarrays
We describe a charge-coupled device (CCD) imaging system for microarrays capable of acquiring quantitative, high dynamic range images of very large fields. Illumination is supplied by an arc lamp, and filters are used to define excitation and emission bands. The system is linear down to fluorochrome densities ≪1 molecule/µm(2). The ratios of the illumination intensity distributions for all excitation wavelengths have a maximum deviation ∼±4% over the object field, so that images can be analyzed without computational corrections for the illumination pattern unless higher accuracy is desired. Custom designed detection optics produce achromatic images of the spectral region from ∼ 450 to ∼750 nm. Acquisition of a series of images of multiple fluorochromes from multiple arrays occurs under computer control. The version of the system described in detail provides images of 20 mm square areas using a 27 mm square, 2K × 2K pixel, cooled CCD chip with a well depth of ∼10(5) electrons, and provides ratio measurements accurate to a few percent over a dynamic range in intensity >1000. Resolution referred to the sample is 10 µm, sufficient for obtaining quantitative multicolor images from >30 000 array elements in an 18 mm × 18 mm square
A Markov Chain Monte Carlo Algorithm for analysis of low signal-to-noise CMB data
We present a new Monte Carlo Markov Chain algorithm for CMB analysis in the
low signal-to-noise regime. This method builds on and complements the
previously described CMB Gibbs sampler, and effectively solves the low
signal-to-noise inefficiency problem of the direct Gibbs sampler. The new
algorithm is a simple Metropolis-Hastings sampler with a general proposal rule
for the power spectrum, C_l, followed by a particular deterministic rescaling
operation of the sky signal. The acceptance probability for this joint move
depends on the sky map only through the difference of chi-squared between the
original and proposed sky sample, which is close to unity in the low
signal-to-noise regime. The algorithm is completed by alternating this move
with a standard Gibbs move. Together, these two proposals constitute a
computationally efficient algorithm for mapping out the full joint CMB
posterior, both in the high and low signal-to-noise regimes.Comment: Submitted to Ap
Estimation of Polarized Power Spectra by Gibbs sampling
Earlier papers introduced a method of accurately estimating the angular
cosmic microwave background (CMB) temperature power spectrum based on Gibbs
sampling. Here we extend this framework to polarized data. All advantages of
the Gibbs sampler still apply, and exact analysis of mega-pixel polarized data
sets is thus feasible. These advantages may be even more important for
polarization measurements than for temperature measurements. While approximate
methods can alias power from the larger E-mode spectrum into the weaker B-mode
spectrum, the Gibbs sampler (or equivalently, exact likelihood evaluations)
allows for a statistically optimal separation of these modes in terms of power
spectra. To demonstrate the method, we analyze two simulated data sets: 1) a
hypothetical future CMBPol mission, with the focus on B-mode estimation; and 2)
a Planck-like mission, to highlight the computational feasibility of the
method.Comment: 8 pages, 5 figures. High-resolution version available from
http://www.astro.uio.no/~hke/docs/larson_et_al_2006.ps.gz; accepted for
publication in Ap
Dark world and baryon asymmetry from a common source
We study generation of baryon number asymmetry and both abundance of dark
matter and dark energy on the basis of global symmetry and its associating flat
directions in a supersymmetric model. We assume the existence of a model
independent axion which is generally expected in the effective theory of
superstring. If we consider a combined field of the model independent axion and
a pseudo Nambu-Goldstone boson coming from spontaneous breaking of the global
symmetry, its potential can be sufficiently flat and then it may present a
candidate of the dark energy as a quintessential axion. Both the baryon
asymmetry and the dark matter are supposed to be produced nonthermally as the
asymmetry of another global charge through the Affleck-Dine mechanism along the
relevant flat direction. Its decay to the observable and hidden sectors
explains the baryon number asymmetry and the dark matter abundance,
respectively.Comment: 28 page
Recommended from our members
The impact of local sources and long-range transport on aerosol properties over the northeast U.S. region during INTEX-NA
We use data collected aboard the NASA DC-8 aircraft during the summer 2004, Intercontinental Transport and Chemical Evolution Experiment over North America (INTEX-NA) field campaign to examine the origin, composition, physical and optical properties of aerosols within air masses sampled over and downwind of the northeastern U.S. We note that aerosol concentrations within the region exhibited steep vertical gradients and significant variability in both time and space. An examination of air mass chemical signatures and backward trajectories indicates that transport from four, significantly different source regions contributed to the variability: the subtropical Atlantic Ocean (AO); the U.S. west coast and eastern Pacific (WCP); the U.S. east coast and Midwestern states (EC); and northwest Canada and Alaska (CA). AO air masses were typically confined to below 2 km altitude, exhibited low pollutant contents, contained enhanced levels of sea salt, and were typically observed when the Bermuda High strengthened. The most common air mass present in the upper troposphere, WCP air often contained weak dust and aged pollution enhances from convective input occurring over the central part of the continent. CA air exhibited enhancements in anthropogenic pollution tracers below 2 km and contained some black-carbon rich haze layers between 3 and 5 km that could be traced to forest fires burning in western Canada and Alaska. EC air was prevalent at lower elevations throughout the study area and exhibited enhanced scattering along with elevated levels of sulfate aerosols and combustion tracers. There is an overall balance between the observed cations and anions for all cases, except EC air mass below 4 km
Bromine measurements in ozone depleted air over the Arctic Ocean
In situ measurements of ozone, photochemically active bromine compounds, and other trace gases over the Arctic Ocean in April 2008 are used to examine the chemistry and geographical extent of ozone depletion in the arctic marine boundary layer (MBL). Data were obtained from the NOAA WP-3D aircraft during the Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC) study and the NASA DC-8 aircraft during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) study. Fast (1 s) and sensitive (detection limits at the low pptv level) measurements of BrCl and BrO were obtained from three different chemical ionization mass spectrometer (CIMS) instruments, and soluble bromide was measured with a mist chamber. The CIMS instruments also detected Br2. Subsequent laboratory studies showed that HOBr rapidly converts to Br2 on the Teflon instrument inlets. This detected Br2 is identified as active bromine and represents a lower limit of the sum HOBr + Br2. The measured active bromine is shown to likely be HOBr during daytime flights in the arctic. In the MBL over the Arctic Ocean, soluble bromide and active bromine were consistently elevated and ozone was depleted. Ozone depletion and active bromine enhancement were confined to the MBL that was capped by a temperature inversion at 200–500 m altitude. In ozone-depleted air, BrO rarely exceeded 10 pptv and was always substantially lower than soluble bromide that was as high as 40 pptv. BrCl was rarely enhanced above the 2 pptv detection limit, either in the MBL, over Alaska, or in the arctic free troposphere
- …