16 research outputs found

    allodb: An R package for biomass estimation at globally distributed extratropical forest plots

    Get PDF
    Allometric equations for calculation of tree above-ground biomass (AGB) form the basis for estimates of forest carbon storage and exchange with the atmosphere. While standard models exist to calculate forest biomass across the tropics, we lack a standardized tool for computing AGB across boreal and temperate regions that comprise the global extratropics. Here we present an integrated R package, allodb, containing systematically selected published allometric equations and proposed functions to compute AGB. The data component of the package is based on 701 woody species identified at 24 large Forest Global Earth Observatory (ForestGEO) forest dynamics plots representing a wide diversity of extratropical forests. A total of 570 parsed allometric equations to estimate individual tree biomass were retrieved, checked and combined using a weighting function designed to ensure optimal equation selection over the full tree size range with smooth transitions across equations. The equation dataset can be customized with built-in functions that subset the original dataset and add new equations. Although equations were curated based on a limited set of forest communities and number of species, this resource is appropriate for large portions of the global extratropics and can easily be expanded to cover novel forest types

    The c-Abl/p73 pathway induces neurodegeneration in a Parkinson's disease model

    No full text
    Parkinson's disease is the second most common neurodegenerative disorder. Although it is clear that dopaminergic neurons degenerate, the underlying molecular mechanisms are still unknown, and thus, successful treatment is still elusive. One pro-apoptotic pathway associated with several neurodegenerative diseases is the tyrosine kinase c-Abl and its target p73. Here, we evaluated the contribution of c-Abl and p73 in the degeneration of dopaminergic neurons induced by the neurotoxin 6-hydroxydopamine as a model for Parkinson's disease. First, we found that in SH-SY5Y cells treated with 6-hydroxydopamine, c-Abl and p73 phosphorylation levels were up-regulated. Also, we found that the pro-apoptotic p73 isoform TAp73 was up-regulated. Then, to evaluate whether c-Abl tyrosine kinase activity is necessary for 6-hydroxydopamine-induced apoptosis, we co-treated SH-SY5Y cells with 6-hydroxydopamine and Imatinib, a c-Abl specific inhibitor, observing that Imatinib prevented p73 phosphorylation, TAp73 up-regulation, and protected SH-SY5Y cells treated with 6-hydroxydopamine from apoptosis. Interestingly, this observation was confirmed in the c-Abl conditional null mice, where 6-hydroxydopamine stereotaxic injections induced a lesser reduction of dopaminergic neurons than in the wild-type mice significantly. Finally, we found that the intraperitoneal administration of Imatinib prevented the death of dopaminergic neurons induced by injecting 6-hydroxydopamine stereotaxically in the mice striatum. Thus, our findings support the idea that the c-Abl/p73 pathway is involved in 6-hydroxydopamine degeneration and suggest that inhibition of its kinase activity might be used as a therapeutical drug in Parkinson's disease

    Resistance and susceptibility QTL identified in a rice MAGIC population by screening with a minor-effect virulence factor from Xanthomonas oryzae pv. oryzae

    Get PDF
    Summary Effective and durable disease resistance for bacterial blight (BB) of rice is a continuous challenge due to the evolution and adaptation of the pathogen, Xanthomonas oryzae pv. oryzae (Xoo), on cultivated rice varieties. Fundamental to this pathogens’ virulence is transcription activator-like (TAL) effectors that activate transcription of host genes and contribute differently to pathogen virulence, fitness or both. Host plant resistance is predicted to be more durable if directed at strategic virulence factors that impact both pathogen virulence and fitness. We characterized Tal7b, a minor-effect virulence factor that contributes incrementally to pathogen virulence in rice, is a fitness factor to the pathogen and is widely present in geographically diverse strains of Xoo. To identify sources of resistance to this conserved effector, we used a highly virulent strain carrying a plasmid borne copy of Tal7b to screen an indica multi-parent advanced generation inter-cross (MAGIC) population. Of 18 QTL revealed by genome-wide association studies and interval mapping analysis, six were specific to Tal7b (qBB-tal7b). Overall, 150 predicted Tal7b gene targets overlapped with qBB-tal7b QTL. Of these, 21 showed polymorphisms in the predicted effector binding element (EBE) site and 23 lost the EBE sequence altogether. Inoculation and bioinformatics studies suggest that the Tal7b target in one of the Tal7b-specific QTL, qBB-tal7b-8, is a disease susceptibility gene and that the resistance mechanism for this locus may be through loss of susceptibility. Our work demonstrates that minor-effect virulence factors significantly contribute to disease and provide a potential new approach to identify effective disease resistance

    Quantitative resistance to bacterial pathogens of rice

    No full text
    Disease resistance is the foundation for managing many plant diseases, because resistant varieties have the strongest impact with minimal environmental effects or cost. Consequently, sources of broad-spectrum resistance (BSR), or resistance that is effective against multiple and/or diverse pathogens is of particular interest. However, achieving BSR depends on having effective resistance sources to introgress into elite germplasm. Multi-parent Advanced Generation Inter-Cross (MAGIC) populations are powerful tools for identifying resistance because they have high levels of recombination and enhanced resolution relative to biparental populations. We screened an indica rice MAGIC population developed from eight elite founders for BSR to diverse strains of the rice bacterial blight and leaf streak pathogens Xanthomonas oryzae pv. oryzae (Xoo) and X. o. pv. oryzicola (Xoc), respectively. In addition, building on our hypothesis that durable disease resistance is attainable by targeting key microbial virulence factors, we screened for resistance to Xoo strains isogenic for the known and common virulence factor TAL7b. A combination of genome-wide association studies and interval mapping analyses revealed a number of loci that conferred BSR to both Xoo and Xoc, as well as resistance targeted at TAL7b. These BSR QTL are excellent sources for durable, broadly effective resistance in the field

    Identification of Novel Genomic Regions for Bacterial Leaf Pustule (BLP) Resistance in Soybean (<i>Glycine max</i> L.) via Integrating Linkage Mapping and Association Analysis

    No full text
    Bacterial leaf pustule (BLP), caused by Xanthornonas axonopodis pv. glycines (Xag), is a worldwide disease of soybean, particularly in warm and humid regions. To date, little is known about the underlying molecular mechanisms of BLP resistance. The only single recessive resistance gene rxp has not been functionally identified yet, even though the genotypes carrying the gene have been widely used for BLP resistance breeding. Using a linkage mapping in a recombinant inbred line (RIL) population against the Xag strain Chinese C5, we identified that quantitative trait locus (QTL) qrxp–17–2 accounted for 74.33% of the total phenotypic variations. We also identified two minor QTLs, qrxp–05–1 and qrxp–17–1, that accounted for 7.26% and 22.26% of the total phenotypic variations, respectively, for the first time. Using a genome-wide association study (GWAS) in 476 cultivars of a soybean breeding germplasm population, we identified a total of 38 quantitative trait nucleotides (QTNs) on chromosomes (Chr) 5, 7, 8, 9,15, 17, 19, and 20 under artificial infection with C5, and 34 QTNs on Chr 4, 5, 6, 9, 13, 16, 17, 18, and 20 under natural morbidity condition. Taken together, three QTLs and 11 stable QTNs were detected in both linkage mapping and GWAS analysis, and located in three genomic regions with the major genomic region containing qrxp_17_2. Real-time RT-PCR analysis of the relative expression levels of five potential candidate genes in the resistant soybean cultivar W82 following Xag treatment showed that of Glyma.17G086300, which is located in qrxp–17–2, significantly increased in W82 at 24 and 72 h post-inoculation (hpi) when compared to that in the susceptible cultivar Jack. These results indicate that Glyma.17G086300 is a potential candidate gene for rxp and the QTLs and QTNs identified in this study will be useful for marker development for the breeding of Xag-resistant soybean cultivars

    allodb: An R package for biomass estimation at globally distributed extratropical forest plots

    No full text
    Allometric equations for calculation of tree above-ground biomass (AGB) form the basis for estimates of forest carbon storage and exchange with the atmosphere. While standard models exist to calculate forest biomass across the tropics, we lack a standardized tool for computing AGB across boreal and temperate regions that comprise the global extratropics. Here we present an integrated R package, allodb, containing systematically selected published allometric equations and proposed functions to compute AGB. The data component of the package is based on 701 woody species identified at 24 large Forest Global Earth Observatory (ForestGEO) forest dynamics plots representing a wide diversity of extratropical forests. A total of 570 parsed allometric equations to estimate individual tree biomass were retrieved, checked and combined using a weighting function designed to ensure optimal equation selection over the full tree size range with smooth transitions across equations. The equation dataset can be customized with built-in functions that subset the original dataset and add new equations. Although equations were curated based on a limited set of forest communities and number of species, this resource is appropriate for large portions of the global extratropics and can easily be expanded to cover novel forest types

    Serum levels of adiponectin and leptin as biomarkers of proteinuria in lupus nephritis

    No full text
    <div><p>Introduction</p><p>There are controversial results about the role of serum leptin and adiponectin levels as biomarkers of the severity of proteinuria in lupus nephritis.</p><p>Objective</p><p>The aim of this study was to evaluate the relationship between serum leptin and adiponectin levels with severity of proteinuria secondary to lupus nephritis (LN).</p><p>Methods</p><p>In a cross-sectional study, 103 women with systemic lupus erythematosus (SLE) were evaluated for kidney involvement. We compared 30 SLE patients with LN, all of them with proteinuria, versus 73 SLE patients without renal involvement (no LN). A comprehensive set of clinical and laboratory variables was assessed, including serum levels of leptin and adiponectin by ELISA. Multivariate analyses were used to adjust for potential confounders associated with proteinuria in LN.</p><p>Results</p><p>We found higher adiponectin levels in the LN group compared with the no LN group (20.4 ± 10.3 vs 15.6 ± 7.8 ÎŒg/mL; p = 0.02), whereas no differences were observed in leptin levels (33.3 ± 31.4 vs 22.5 ± 25.5 ng/mL; p = 0.07). Severity of proteinuria correlated with an increase in adiponectin levels (r = 0.31; p = 0.001), but no correlation was observed with leptin. Adiponectin levels were not related to anti-dsDNA or anti-nucleosome antibodies. In the logistic regression, adiponectin levels were associated with a high risk of proteinuria in SLE (OR = 1.06; 95% CI 1.01–1.12; p = 0.02). Instead, leptin was not associated with LN.</p><p>Conclusion</p><p>These findings indicate that adiponectin levels are useful markers associated with proteinuria in LN. Further longitudinal studies are required to identify if these levels are predictive of renal relapse.</p></div
    corecore