492 research outputs found

    Forces between clustered stereocilia minimize friction in the ear on a subnanometre scale

    Full text link
    The detection of sound begins when energy derived from acoustic stimuli deflects the hair bundles atop hair cells. As hair bundles move, the viscous friction between stereocilia and the surrounding liquid poses a fundamental challenge to the ear's high sensitivity and sharp frequency selectivity. Part of the solution to this problem lies in the active process that uses energy for frequency-selective sound amplification. Here we demonstrate that a complementary part involves the fluid-structure interaction between the liquid within the hair bundle and the stereocilia. Using force measurement on a dynamically scaled model, finite-element analysis, analytical estimation of hydrodynamic forces, stochastic simulation and high-resolution interferometric measurement of hair bundles, we characterize the origin and magnitude of the forces between individual stereocilia during small hair-bundle deflections. We find that the close apposition of stereocilia effectively immobilizes the liquid between them, which reduces the drag and suppresses the relative squeezing but not the sliding mode of stereociliary motion. The obliquely oriented tip links couple the mechanotransduction channels to this least dissipative coherent mode, whereas the elastic horizontal top connectors stabilize the structure, further reducing the drag. As measured from the distortion products associated with channel gating at physiological stimulation amplitudes of tens of nanometres, the balance of forces in a hair bundle permits a relative mode of motion between adjacent stereocilia that encompasses only a fraction of a nanometre. A combination of high-resolution experiments and detailed numerical modelling of fluid-structure interactions reveals the physical principles behind the basic structural features of hair bundles and shows quantitatively how these organelles are adapted to the needs of sensitive mechanotransduction.Comment: 21 pages, including 3 figures. For supplementary information, please see the online version of the article at http://www.nature.com/natur

    Graft-versus-brain tumor effect in a child with anaplastic astrocytoma after cord blood transplantation for therapy-related leukemia

    Get PDF

    The Effects of Resistance and Plyometric Training on Vertical Jump

    Get PDF
    Several training protocols are available when it comes to increase the height of vertical jump. The purpose of the study was to test two different training protocols to see if they would generate a higher vertical jump at the end of a four week training period. This study tested to see if there was a correlation between two different types of training, resistance training and plyometric training, and the vertical jump. Both produce force and both have been used when training jump height, but which is best: resistance training or plyometric training? Six college-aged subjects who attend the University of Texas at Tyler (five male and one female) were divided into a resistance training group and a plyometric training group. Both groups then participated in four weeks of their designated training regimen. Each subject was tested at the end of each week using a Vertex and Ground Reaction Force plate to measure vertical height and force produced from each jump. We then normalized our data into percentages and inputted those values into an Excel program to create a Regression Line. The results showed that over a four-week period, plyometric training and resistance training saw an increase in vertical jump height, overall. However, the plyometric group increased their jump significantly over the four-week period and increased their force production. The resistance group, while they did increase their vertical, did not increase at the rate that the plyometric group did. Their force production generally speaking, decreased over the four-week period. However, with the data obtained, we can then use this to plan a program for coaches and their athletes. If coaches and trainers only have a short period of time, one month for example, then plyometric training is the best way to train for an increase in vertical jump height. More tests would have to be done to see if resistance training would be more effective than plyometric training over an extended period of time

    Essential nonlinearities in hearing

    Get PDF
    Our hearing organ, the cochlea, evidently poises itself at a Hopf bifurcation to maximize tuning and amplification. We show that in this condition several effects are expected to be generic: compression of the dynamic range, infinitely shrap tuning at zero input, and generation of combination tones. These effects are "essentially" nonlinear in that they become more marked the smaller the forcing: there is no audible sound soft enough not to evoke them. All the well-documented nonlinear aspects of hearing therefore appear to be consequences of the same underlying mechanism.Comment: 4 pages, 3 figure

    Information Flow through a Chaotic Channel: Prediction and Postdiction at Finite Resolution

    Full text link
    We reconsider the persistence of information under the dynamics of the logistic map in order to discuss communication through a nonlinear channel where the sender can set the initial state of the system with finite resolution, and the recipient measures it with the same accuracy. We separate out the contributions of global phase space shrinkage and local phase space contraction and expansion to the uncertainty in predicting and postdicting the state of the system. Thus, we determine how the amplification parameter, the time lag, and the resolution influence the possibility for communication. A novel representation for real numbers is introduced that allows for a visualization of the flow of information between scales.Comment: 14 pages, 13 figure

    Simultaneous X-ray diffraction and phase-contrast imaging for investigating material deformation mechanisms during high-rate loading

    Get PDF
    Using a high-speed camera and an intensified charge-coupled device (ICCD), a simultaneous X-ray imaging and diffraction technique has been developed for studying dynamic material behaviors during high-rate tensile loading. A Kolsky tension bar has been used to pull samples at 1000 s(−1) and 5000 s(−1) strain-rates for super-elastic equiatomic NiTi and 1100-O series aluminium, respectively. By altering the ICCD gating time, temporal resolutions of 100 ps and 3.37 µs have been achieved in capturing the diffraction patterns of interest, thus equating to single-pulse and 22-pulse X-ray exposure. Furthermore, the sample through-thickness deformation process has been simultaneously imaged via phase-contrast imaging. It is also shown that adequate signal-to-noise ratios are achieved for the detected white-beam diffraction patterns, thereby allowing sufficient information to perform quantitative data analysis diffraction via in-house software (WBXRD_GUI). Of current interest is the ability to evaluate crystal d-spacing, texture evolution and material phase transitions, all of which will be established from experiments performed at the aforementioned elevated strain-rates

    Crystal Structure of Borrelia turicatae protein, BTA121, a differentially regulated gene in the tick-mammalian transmission cycle of relapsing fever spirochetes

    Get PDF
    Tick-borne relapsing fever (RF) borreliosis is a neglected disease that is often misdiagnosed. RF species circulating in the United States include Borrelia turicatae, which is transmitted by argasid ticks. Environmental adaptation by RF Borrelia is poorly understood, however our previous studies indicated differential regulation of B. turicatae genes localized on the 150 kb linear megaplasmid during the tick- mammalian transmission cycle, including bta121. This gene is up-regulated by B. turicatae in the tick versus the mammal, and the encoded protein (BTA121) is predicted to be surface localized. The structure of BTA121 was solved by single- wavelength anomalous dispersion (SAD) using selenomethionine-derivative protein. The topology of BTA121 is unique with four helical domains organized into two helical bundles. Due to the sequence similarity of several genes on the megaplasmid, BTA121 can serve as a model for their tertiary structures. BTA121 has large interconnected tunnels and cavities that can accommodate ligands, notably long parallel helices, which have a large hydrophobic central pocket. Preliminary in-vitro studies suggest that BTA121 binds lipids, notably palmitate with a similar order of binding affinity as tablysin-15, a known palmitate-binding protein. The reported data will guide mechanistic studies to determine the role of BTA121 in the tick-mammalian transmission cycle of B. turicatae

    Branching dendrites with resonant membrane: a “sum-over-trips” approach

    Get PDF
    Dendrites form the major components of neurons. They are complex branching structures that receive and process thousands of synaptic inputs from other neurons. It is well known that dendritic morphology plays an important role in the function of dendrites. Another important contribution to the response characteristics of a single neuron comes from the intrinsic resonant properties of dendritic membrane. In this paper we combine the effects of dendritic branching and resonant membrane dynamics by generalising the “sum-over-trips” approach (Abbott et al. in Biol Cybernetics 66, 49–60 1991). To illustrate how this formalism can shed light on the role of architecture and resonances in determining neuronal output we consider dual recording and reconstruction data from a rat CA1 hippocampal pyramidal cell. Specifically we explore the way in which an Ih current contributes to a voltage overshoot at the soma
    corecore