1,360 research outputs found

    The effect of the systemic inflammatory response on plasma vitamin 25 (OH) D concentrations adjusted for albumin

    Get PDF
    <b>Aim</b><p></p> To examine the relationship between plasma 25(OH)D, CRP and albumin concentrations in two patient cohorts.<p></p> <b>Methods</b><p></p> 5327 patients referred for nutritional assessment and 117 patients with critical illness were examined. Plasma 25 (OH) D concentrations were measured using standard methods. Intra and between assay imprecision was <10%.<p></p> <b>Result</b><p></p> In the large cohort, plasma 25 (OH) D was significantly associated with CRP (rs = −0.113, p<0.001) and albumin (rs = 0.192, p<0.001). 3711 patients had CRP concentrations ≤10 mg/L; with decreasing albumin concentrations ≥35, 25–34 and <25 g/l, median concentrations of 25 (OH) D were significantly lower from 35 to 28 to 14 nmol/l (p<0.001). This decrease was significant when albumin concentrations were reduced between 25–34 g/L (p<0.001) and when albumin <25 g/L (p<0.001). 1271 patients had CRP concentrations between 11–80 mg/L; with decreasing albumin concentrations ≥35, 25–34 and <25 g/l, median concentrations of 25 (OH) D were significantly lower from 31 to 24 to 19 nmol/l (p<0.001). This decrease was significant when albumin concentration were 25–34 g/L (p<0.001) and when albumin <25 g/L (p<0.001). 345 patients had CRP concentrations >80 mg/L; with decreasing albumin concentrations ≥35, 25–34 and <25 g/l, median concentrations of 25 (OH) D were not significantly altered varying from 19 to 23 to 23 nmol/l. Similar relationships were also obtained in the cohort of patients with critical illness.<p></p> <b>Conclusion</b><p></p> Plasma concentrations of 25(OH) D were independently associated with both CRP and albumin and consistent with the systemic inflammatory response as a major confounding factor in determining vitamin D status.<p></p&gt

    The complete linkage disequilibrium test: a test that points to causative mutations underlying quantitative traits

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genetically, SNP that are in complete linkage disequilibrium with the causative SNP cannot be distinguished from the causative SNP. The Complete Linkage Disequilibrium (CLD) test presented here tests whether a SNP is in complete LD with the causative mutation or not. The performance of the CLD test is evaluated in 1000 simulated datasets.</p> <p>Methods</p> <p>The CLD test consists of two steps i.e. analysis I and analysis II. Analysis I consists of an association analysis of the investigated region. The log-likelihood values from analysis I are next ranked in descending order and in analysis II the CLD test evaluates differences in log-likelihood ratios between the best and second best markers. Under the null-hypothesis distribution, the best SNP is in greater LD with the QTL than the second best, while under the alternative-CLD-hypothesis, the best SNP is alike-in-state with the QTL. To find a significance threshold, the test was also performed on data excluding the causative SNP. The 5<sup>th</sup>, 10<sup>th </sup>and 50<sup>th </sup>highest T<sub>CLD </sub>value from 1000 replicated analyses were used to control the type-I-error rate of the test at p = 0.005, p = 0.01 and p = 0.05, respectively.</p> <p>Results</p> <p>In a situation where the QTL explained 48% of the phenotypic variance analysis I detected a QTL in 994 replicates (p = 0.001), where 972 were positioned in the correct QTL position. When the causative SNP was excluded from the analysis, 714 replicates detected evidence of a QTL (p = 0.001). In analysis II, the CLD test confirmed 280 causative SNP from 1000 simulations (p = 0.05), i.e. power was 28%. When the effect of the QTL was reduced by doubling the error variance, the power of the test reduced relatively little to 23%. When sequence data were used, the power of the test reduced to 16%. All SNP that were confirmed by the CLD test were positioned in the correct QTL position.</p> <p>Conclusions</p> <p>The CLD test can provide evidence for a causative SNP, but its power may be low in situations with closely linked markers. In such situations, also functional evidence will be needed to definitely conclude whether the SNP is causative or not.</p

    Cubic-spline interpolation to estimate effects of inbreeding on milk yield in first lactation Holstein cows

    Get PDF
    Milk yield records (305d, 2X, actual milk yield) of 123,639 registered first lactation Holstein cows were used to compare linear regression (y = β0 + β1X + e), quadratic regression, (y = β0 + β1X + β2X2 + e) cubic regression (y = β0 + β1X + β2X2 + β3X3 +e) and fixed factor models, with cubic-spline interpolation models, for estimating the effects of inbreeding on milk yield. Ten animal models, all with herd-year-season of calving as fixed effect, were compared using the Akaike corrected-Information Criterion (AICc). The cubic-spline interpolation model with seven knots had the lowest AICc, whereas for all those labeled as “traditional”, AICc was higher than the best model. Results from fitting inbreeding using a cubic-spline with seven knots were compared to results from fitting inbreeding as a linear covariate or as a fixed factor with seven levels. Estimates of inbreeding effects were not significantly different between the cubic-spline model and the fixed factor model, but were significantly different from the linear regression model. Milk yield decreased significantly at inbreeding levels greater than 9%. Variance component estimates were similar for the three models. Ranking of the top 100 sires with daughter records remained unaffected by the model used

    Using zebrafish larval models to study brain injury, locomotor and neuroinflammatory outcomes following intracerebral haemorrhage.

    Get PDF
    Intracerebral haemorrhage (ICH) is a devastating condition with limited treatment options, and current understanding of pathophysiology is incomplete. Spontaneous cerebral bleeding is a characteristic of the human condition that has proven difficult to recapitulate in existing pre-clinical rodent models. Zebrafish larvae are frequently used as vertebrate disease models and are associated with several advantages, including high fecundity, optical translucency and non-protected status prior to 5 days post-fertilisation. Furthermore, other groups have shown that zebrafish larvae can exhibit spontaneous ICH. The aim of this study was to investigate whether such models can be utilised to study the pathological consequences of bleeding in the brain, in the context of pre-clinical ICH research. Here, we compared existing genetic (bubblehead) and chemically inducible (atorvastatin) zebrafish larval models of spontaneous ICH and studied the subsequent disease processes. Through live, non-invasive imaging of transgenic fluorescent reporter lines and behavioural assessment we quantified brain injury, locomotor function and neuroinflammation following ICH. We show that ICH in both zebrafish larval models is comparable in timing, frequency and location. ICH results in increased brain cell death and a persistent locomotor deficit. Additionally, in haemorrhaged larvae we observed a significant increase in macrophage recruitment to the site of injury. Live in vivo imaging allowed us to track active macrophage-based phagocytosis of dying brain cells 24 hours after haemorrhage. Morphological analyses and quantification indicated that an increase in overall macrophage activation occurs in the haemorrhaged brain. Our study shows that in zebrafish larvae, bleeding in the brain induces quantifiable phenotypic outcomes that mimic key features of human ICH. We hope that this methodology will enable the pre-clinical ICH community to adopt the zebrafish larval model as an alternative to rodents, supporting future high throughput drug screening and as a complementary approach to elucidating crucial mechanisms associated with ICH pathophysiology

    Mitochondrial DNA and traumatic brain injury.

    Get PDF
    OBJECTIVE: Traumatic brain injury (TBI) is a multifactorial pathology with great interindividual variability in response to injury and outcome. Mitochondria contain their own DNA (mtDNA) with genomic variants that have different physiological and pathological characteristics, including susceptibility to neurodegeneration. Given the central role of mitochondria in the pathophysiology of neurological injury, we hypothesized that its genomic variants may account for the variability in outcome following TBI. METHODS: We undertook an analysis of mitochondrial haplogroups in a large, well-characterized cohort of 1,094 TBI patients. A proportional odds model including age, brain computed tomography characteristics, injury severity, pupillary reactivity, mitochondrial haplogroups, and APOE was applied to Glasgow Outcome Score (GOS) data. RESULTS: mtDNA had a significant association with 6-month GOS (p=0.008). Haplogroup K was significantly associated with favorable outcome (odds ratio=1.64, 95% confidence interval=1.08-2.51, p=0.02). There was also a significant interaction between mitochondrial genome and age (p=0.002), with a strong protective effect of both haplogroups T (p=0.015) and K (p=0.017) with advancing age. We also found a strong interaction between APOE and mitochondrial haplogroups (p=0.001), indicating a protective effect of haplogroup K in carriers of the APOE ε4 allele. INTERPRETATION: These findings reveal an interplay between mitochondrial DNA, pathophysiology of TBI, and aging. Haplogroups K and T, which share a common maternal ancestor, are shown as protective in TBI. The data also suggest that the APOE pathways interact with genetically regulated mitochondrial functions in the response to acute injury, as previously reported in Alzheimer disease

    Comparative Longitudinal Serological Study of Anti-SARS-CoV-2 Antibody Profiles in People with COVID-19

    Full text link
    Serological diagnostic assays are essential tools for determining an individual’s protection against viruses like SARS-CoV-2, tracking the spread of the virus in the community, and evaluating population immunity. To assess the diversity and quality of the anti-SARS-CoV-2 antibody response, we have compared the antibody profiles of people with mild, moderate, and severe COVID-19 using a dot blot assay. The test targeted the four major structural proteins of SARS-CoV-2, namely the nucleocapsid (N), spike (S) protein domains S1 and S2, and receptor-binding domain (RBD). Serum samples were collected from 63 participants at various time points for up to 300 days after disease onset. The dot blot assay revealed patient-specific differences in the anti-SARS-CoV-2 antibody profiles. Out of the 63 participants with confirmed SARS-CoV-2 infections and clinical COVID-19, 35/63 participants exhibited diverse and robust responses against the tested antigens, while 14/63 participants displayed either limited responses to a subset of antigens or no detectable antibody response to any of the antigens. Anti-N-specific antibody levels decreased within 300 days after disease onset, whereas anti-S-specific antibodies persisted. The dynamics of the antibody response did not change during the test period, indicating stable antibody profiles. Among the participants, 28/63 patients with restricted anti-S antibody profiles or undetectable anti-S antibody levels in the dot blot assay also exhibited weak neutralization activity, as measured by a surrogate virus neutralization test (sVNT) and a microneutralization test. These results indicate that in some cases, natural infections do not lead to the production of neutralizing antibodies. Furthermore, the study revealed significant serological variability among patients, regardless of the severity of their COVID-19 illness. These differences need to be carefully considered when evaluating the protective antibody status of individuals who have experienced primary SARS-CoV-2 infections

    Using simulation to interpret a discrete time survival model in a complex biological system: fertility and lameness in dairy cows

    Get PDF
    The ever-growing volume of data routinely collected and stored in everyday life presents researchers with a number of opportunities to gain insight and make predictions. This study aimed to demonstrate the usefulness in a specific clinical context of a simulation-based technique called probabilistic sensitivity analysis (PSA) in interpreting the results of a discrete time survival model based on a large dataset of routinely collected dairy herd management data. Data from 12,515 dairy cows (from 39 herds) were used to construct a multilevel discrete time survival model in which the outcome was the probability of a cow becoming pregnant during a given two day period of risk, and presence or absence of a recorded lameness event during various time frames relative to the risk period amongst the potential explanatory variables. A separate simulation model was then constructed to evaluate the wider clinical implications of the model results (i.e. the potential for a herd’s incidence rate of lameness to influence its overall reproductive performance) using PSA. Although the discrete time survival analysis revealed some relatively large associations between lameness events and risk of pregnancy (for example, occurrence of a lameness case within 14 days of a risk period was associated with a 25% reduction in the risk of the cow becoming pregnant during that risk period), PSA revealed that, when viewed in the context of a realistic clinical situation, a herd’s lameness incidence rate is highly unlikely to influence its overall reproductive performance to a meaningful extent in the vast majority of situations. Construction of a simulation model within a PSA framework proved to be a very useful additional step to aid contextualisation of the results from a discrete time survival model, especially where the research is designed to guide on-farm management decisions at population (i.e. herd) rather than individual level

    Osteoarticular Infection in Three Young Thoroughbred Horses Caused by a Novel Gram Negative Cocco-Bacillus

    Full text link
    © 2020 Bernard J. Hudson et al. We describe three cases of osteoarticular infection (OAI) in young thoroughbred horses in which the causative organism was identified by MALDI-TOF as Kingella species. The pattern of OAI resembled that reported with Kingella infection in humans. Analysis by 16S rRNA PCR enabled construction of a phylogenetic tree that placed the isolates closer to Simonsiella and Alysiella species, rather than Kingella species. Average nucleotide identity (ANI) comparison between the new isolate and Kingella kingae and Alysiella crassa however revealed low probability that the new isolate belonged to either of these species. This preliminary analysis suggests the organism isolated is a previously unrecognised species
    corecore