60 research outputs found

    The View from T-Hall: Supporting the Greater Good

    Get PDF

    The View from T-Hall: An Extraordinary Legacy

    Get PDF

    Erythema Nodosum Associated With Streptococcal Infection in Pregnancy

    Get PDF
    Background: Erythema nodosum (EN) is a condition characterized by the presence of painful erythematous nodules on the pretibial aspects of the lower extremities. EN is thought to be a local inflammatory, immune-mediated reaction to a number of systemic antigenic stimuli. This condition is noted most often in women between menarche and menopause and is associated with certain drugs, infections, and pregnancy. However, no reports in the literature describe EN as a result of streptococcal infection during pregnancy

    High Efficiency Planar Geometry Germanium-on-silicon Single-photon Avalanche Diode Detectors

    Get PDF
    This paper presents the performance of 26 μm and 50 μm diameter planar Ge-on-Si single-photon avalanche diode (SPAD) detectors. The addition of germanium in these detectors extends the spectral range into the short-wave infrared (SWIR) region, beyond the capability of already well-established Si SPAD devices. There are several advantages for extending the spectral range into the SWIR region including: reduced eye-safety laser threshold, greater attainable ranges, and increased depth resolution in range finding applications, in addition to the enhanced capability to image through obscurants such as fog and smoke. The time correlated single-photon counting (TCSPC) technique has been utilized to observe record low dark count rates, below 100 kHz at a temperature of 125 K for up to a 6.6 % excess bias, for the 26 μm diameter devices. Under identical experimental conditions, in terms of excess bias and temperature, the 50 μm diameter device consistently demonstrates dark count rates a factor of 4 times greater than 26 μm diameter devices, indicating that the dark count rate is proportional to the device volume. Single-photon detection efficiencies of up to ~ 29 % were measured at a wavelength of 1310 nm at 125 K. Noise equivalent powers (NEP) down to 9.8 × 10-17 WHz-1/2 and jitters < 160 ps are obtainable, both significantly lower than previous 100 μm diameter planar geometry devices, demonstrating the potential of these devices for highly sensitive and high-speed imaging in the SWIR

    C-Reactive Protein, Erythrocyte Sedimentation Rate and Orthopedic Implant Infection

    Get PDF
    BACKGROUND: C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR) have been shown to be useful for diagnosis of prosthetic hip and knee infection. Little information is available on CRP and ESR in patients undergoing revision or resection of shoulder arthroplasties or spine implants. METHODS/RESULTS: We analyzed preoperative CRP and ESR in 636 subjects who underwent knee (n=297), hip (n=221) or shoulder (n=64) arthroplasty, or spine implant (n=54) removal. A standardized definition of orthopedic implant-associated infection was applied. Receiver operating curve analysis was used to determine ideal cutoff values for differentiating infected from non-infected cases. ESR was significantly different in subjects with aseptic failure infection of knee (median 11 and 53.5 mm/h, respectively, p=<0.0001) and hip (median 11 and 30 mm/h, respectively, p=<0.0001) arthroplasties and spine implants (median 10 and 48.5 mm/h, respectively, p=0.0033), but not shoulder arthroplasties (median 10 and 9 mm/h, respectively, p=0.9883). Optimized ESR cutoffs for knee, hip and shoulder arthroplasties and spine implants were 19, 13, 26, and 45 mm/h, respectively. Using these cutoffs, sensitivity and specificity to detect infection were 89 and 74% for knee, 82 and 60% for hip, and 32 and 93% for shoulder arthroplasties, and 57 and 90% for spine implants. CRP was significantly different in subjects with aseptic failure and infection of knee (median 4 and 51 mg/l, respectively, p<0.0001), hip (median 3 and 18 mg/l, respectively, p<0.0001), and shoulder (median 3 and 10 mg/l, respectively, p=0.01) arthroplasties, and spine implants (median 3 and 20 mg/l, respectively, p=0.0011). Optimized CRP cutoffs for knee, hip, and shoulder arthroplasties, and spine implants were 14.5, 10.3, 7, and 4.6 mg/l, respectively. Using these cutoffs, sensitivity and specificity to detect infection were 79 and 88% for knee, 74 and 79% for hip, and 63 and 73% for shoulder arthroplasties, and 79 and 68% for spine implants. CONCLUSION: CRP and ESR have poor sensitivity for the diagnosis of shoulder implant infection. A CRP of 4.6 mg/l had a sensitivity of 79 and a specificity of 68% to detect infection of spine implants

    Carboxylic ester hydrolases from hyperthermophiles

    Get PDF
    Carboxylic ester hydrolyzing enzymes constitute a large group of enzymes that are able to catalyze the hydrolysis, synthesis or transesterification of an ester bond. They can be found in all three domains of life, including the group of hyperthermophilic bacteria and archaea. Esterases from the latter group often exhibit a high intrinsic stability, which makes them of interest them for various biotechnological applications. In this review, we aim to give an overview of all characterized carboxylic ester hydrolases from hyperthermophilic microorganisms and provide details on their substrate specificity, kinetics, optimal catalytic conditions, and stability. Approaches for the discovery of new carboxylic ester hydrolases are described. Special attention is given to the currently characterized hyperthermophilic enzymes with respect to their biochemical properties, 3D structure, and classification

    The genomic landscape of balanced cytogenetic abnormalities associated with human congenital anomalies

    Get PDF
    Despite the clinical significance of balanced chromosomal abnormalities (BCAs), their characterization has largely been restricted to cytogenetic resolution. We explored the landscape of BCAs at nucleotide resolution in 273 subjects with a spectrum of congenital anomalies. Whole-genome sequencing revised 93% of karyotypes and demonstrated complexity that was cryptic to karyotyping in 21% of BCAs, highlighting the limitations of conventional cytogenetic approaches. At least 33.9% of BCAs resulted in gene disruption that likely contributed to the developmental phenotype, 5.2% were associated with pathogenic genomic imbalances, and 7.3% disrupted topologically associated domains (TADs) encompassing known syndromic loci. Remarkably, BCA breakpoints in eight subjects altered a single TAD encompassing MEF2C, a known driver of 5q14.3 microdeletion syndrome, resulting in decreased MEF2C expression. We propose that sequence-level resolution dramatically improves prediction of clinical outcomes for balanced rearrangements and provides insight into new pathogenic mechanisms, such as altered regulation due to changes in chromosome topology

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
    corecore