315 research outputs found

    Effects of new physics in neutrino oscillations in matter

    Get PDF
    A new flavor changing electron neutrino interaction with matter would always dominate the nu_e oscillation probability at sufficiently high neutrino energies. Being suppressed by theta_{13}, the energy scale at which the new effect starts to be relevant may be within the reach of realistic experiments, where the peculiar dependence of the signal with energy could give rise to a clear signature in the nu_e --> nu_tau channel. The latter could be observed by means of a coarse large magnetized detector by exploiting tau --> mu decays. We discuss the possibility of identifying or constraining such effects with a high energy neutrino factory. We also comment on the model independent limits on them.Comment: 11 pages, 5 figure

    Confusing non-standard neutrino interactions with oscillations at a neutrino factory

    Get PDF
    Most neutrino mass theories contain non-standard interactions (NSI) of neutrinos which can be either non-universal (NU) or flavor-changing (FC). We study the impact of such interactions on the determination of neutrino mixing parameters at a neutrino factory using the so-called ``golden channels'' \pnu{e}\to\pnu{\mu} for the measurement of \theta_{13}. We show that a certain combination of FC interactions in neutrino source and earth matter can give exactly the same signal as oscillations arising due to \theta_{13}. This implies that information about \theta_{13} can only be obtained if bounds on NSI are available. Taking into account the existing bounds on FC interactions, this leads to a drastic loss in sensitivity in \theta_{13}, at least two orders of magnitude. A near detector at a neutrino factory offers the possibility to obtain stringent bounds on some NSI parameters. Such near site detector constitutes an essential ingredient of a neutrino factory and a necessary step towards the determination of \theta_{13} and subsequent study of leptonic CP violation.Comment: 23 pages, 5 figures, improved version, accepted for publication in Phs. Rev. D, references adde

    Reexamining nonstandard interaction effects on supernova neutrino flavor oscillations

    Get PDF
    Several extensions of the standard electroweak model allow new four-fermion interactions (nu_a nu_b * ff) with strength eps_ab*G_F, where (a,b) are flavor indices. We revisit their effects on flavor oscillations of massive (anti)neutrinos in supernovae, in order to achieve, in the region above the protoneutron star, an analytical treatment valid for generic values of the neutrino mixing angles (omega,phi,psi)=(theta_12,theta_13,theta_23). Assuming that eps_ab<<1, we find that the leading effects on the flavor transitions occurring at high (H) and low (L) density along the supernova matter profile can be simply embedded through the replacements phi-->phi+eps_H and omega-->omega+eps_L, respectively, where eps_H and eps_L are specific linear combinations of the eps_ab's. Similar replacements hold for eventual oscillations in the Earth matter. From a phenomenological point of view, the most relevant consequence is a possible uncontrolled bias (phi-->phi+eps_H) in the value of the mixing angle phi inferred by inversion of supernova neutrino data. Such a drawback, however, does not preclude the discrimination of the neutrino mass spectrum hierarchy (direct or inverse) through supernova neutrino oscillations.Comment: Text clarified, one figure added. To appear in PR

    Origin of Life

    Full text link
    The evolution of life has been a big enigma despite rapid advancements in the fields of biochemistry, astrobiology, and astrophysics in recent years. The answer to this puzzle has been as mind-boggling as the riddle relating to evolution of Universe itself. Despite the fact that panspermia has gained considerable support as a viable explanation for origin of life on the Earth and elsewhere in the Universe, the issue remains far from a tangible solution. This paper examines the various prevailing hypotheses regarding origin of life like abiogenesis, RNA World, Iron-sulphur World, and panspermia; and concludes that delivery of life-bearing organic molecules by the comets in the early epoch of the Earth alone possibly was not responsible for kick-starting the process of evolution of life on our planet.Comment: 32 pages, 8 figures,invited review article, minor additio

    Deviation of Atmospheric Mixing from Maximal and Structure in the Leptonic Flavor Sector

    Full text link
    I attempt to quantify how far from maximal one should expect the atmospheric mixing angle to be given a neutrino mass-matrix that leads, at zeroth order, to a nu_3 mass-eigenstate that is 0% nu_e, 50% nu_mu, and 50% nu_tau. This is done by assuming that the solar mass-squared difference is induced by an "anarchical" first order perturbation, an approach than can naturally lead to experimentally allowed values for all oscillation parameters. In particular, both |cos 2theta_atm| (the measure for the deviation of atmospheric mixing from maximal) and |U_e3| are of order sqrt(Delta m^2_sol/Delta m^2_atm) in the case of a normal neutrino mass-hierarchy, or of order Delta m^2_sol/Delta m^2_atm in the case of an inverted one. Hence, if any of the textures analyzed here has anything to do with reality, next-generation neutrino experiments can see a nonzero cos 2theta_atm in the case of a normal mass-hierarchy, while in the case of an inverted mass-hierarchy only neutrino factories should be able to see a deviation of sin^2 2theta_atm from 1.Comment: 12 pages, no figures, references and acknowledgments adde

    Density correlations and dynamical Casimir emission of Bogoliubov phonons in modulated atomic Bose-Einstein condensates

    Full text link
    We present a theory of the density correlations that appear in an atomic Bose-Einstein condensate as a consequence of the dynamical Casimir emission of pairs of Bogoliubov phonons when the atom-atom scattering length is modulated in time. Different regimes as a function of the temporal shape of the modulation are identified and a simple physical picture of the phenomenon is discussed. Analytical expressions for the density correlation function are provided for the most significant limiting cases. This theory is able to explain some unexpected features recently observed in numerical calculations of Hawking radiation from analog black holes

    Six sigma, absorptive capacity and organisational learning orientation

    Get PDF
    "This is an Accepted Manuscript of an article published by Taylor & Francis in International Journal of Production Research, available online: http://wwww.tandfonline.com/10.1080/00207543.2010.543175."The importance of the Six Sigma methodology in industry is growing constantly. However, there are few empirical studies that analyze the advantages of this methodology and its positive effects on organizational performance. The purpose of this paper is to extend understanding of the success of Six Sigma quality management initiatives by investigating the effects of Six Sigma teamwork and process management on absorptive capacity. It also seeks to understand the relation between absorptive capacity and organizational learning as two sources of sustainable competitive advantage. The information used comes from a larger study, the data for which were collected from a random sample of 237 European firms. Of these 237 organizations, 58 are Six Sigma organizations. Structural Equation Modelling (SEM) was used to test the hypotheses. The main findings show that Six Sigma teamwork and process management positively affect the development of absorptive capacity. A positive and significant relationship is also observed between absorptive capacity and organizational learning orientation. The findings of this study justify Six Sigma implementation in firms. This study provides us with an in-depth understanding of some structural elements that characterize the Six Sigma methodology, enabling us to provide an explanation for its success

    Towards Machine Wald

    Get PDF
    The past century has seen a steady increase in the need of estimating and predicting complex systems and making (possibly critical) decisions with limited information. Although computers have made possible the numerical evaluation of sophisticated statistical models, these models are still designed \emph{by humans} because there is currently no known recipe or algorithm for dividing the design of a statistical model into a sequence of arithmetic operations. Indeed enabling computers to \emph{think} as \emph{humans} have the ability to do when faced with uncertainty is challenging in several major ways: (1) Finding optimal statistical models remains to be formulated as a well posed problem when information on the system of interest is incomplete and comes in the form of a complex combination of sample data, partial knowledge of constitutive relations and a limited description of the distribution of input random variables. (2) The space of admissible scenarios along with the space of relevant information, assumptions, and/or beliefs, tend to be infinite dimensional, whereas calculus on a computer is necessarily discrete and finite. With this purpose, this paper explores the foundations of a rigorous framework for the scientific computation of optimal statistical estimators/models and reviews their connections with Decision Theory, Machine Learning, Bayesian Inference, Stochastic Optimization, Robust Optimization, Optimal Uncertainty Quantification and Information Based Complexity.Comment: 37 page
    • …
    corecore