315 research outputs found
Effects of new physics in neutrino oscillations in matter
A new flavor changing electron neutrino interaction with matter would always
dominate the nu_e oscillation probability at sufficiently high neutrino
energies. Being suppressed by theta_{13}, the energy scale at which the new
effect starts to be relevant may be within the reach of realistic experiments,
where the peculiar dependence of the signal with energy could give rise to a
clear signature in the nu_e --> nu_tau channel. The latter could be observed by
means of a coarse large magnetized detector by exploiting tau --> mu decays. We
discuss the possibility of identifying or constraining such effects with a high
energy neutrino factory. We also comment on the model independent limits on
them.Comment: 11 pages, 5 figure
Confusing non-standard neutrino interactions with oscillations at a neutrino factory
Most neutrino mass theories contain non-standard interactions (NSI) of
neutrinos which can be either non-universal (NU) or flavor-changing (FC). We
study the impact of such interactions on the determination of neutrino mixing
parameters at a neutrino factory using the so-called ``golden channels''
\pnu{e}\to\pnu{\mu} for the measurement of \theta_{13}. We show that a certain
combination of FC interactions in neutrino source and earth matter can give
exactly the same signal as oscillations arising due to \theta_{13}. This
implies that information about \theta_{13} can only be obtained if bounds on
NSI are available. Taking into account the existing bounds on FC interactions,
this leads to a drastic loss in sensitivity in \theta_{13}, at least two orders
of magnitude. A near detector at a neutrino factory offers the possibility to
obtain stringent bounds on some NSI parameters. Such near site detector
constitutes an essential ingredient of a neutrino factory and a necessary step
towards the determination of \theta_{13} and subsequent study of leptonic CP
violation.Comment: 23 pages, 5 figures, improved version, accepted for publication in
Phs. Rev. D, references adde
Reexamining nonstandard interaction effects on supernova neutrino flavor oscillations
Several extensions of the standard electroweak model allow new four-fermion
interactions (nu_a nu_b * ff) with strength eps_ab*G_F, where (a,b) are flavor
indices. We revisit their effects on flavor oscillations of massive
(anti)neutrinos in supernovae, in order to achieve, in the region above the
protoneutron star, an analytical treatment valid for generic values of the
neutrino mixing angles (omega,phi,psi)=(theta_12,theta_13,theta_23). Assuming
that eps_ab<<1, we find that the leading effects on the flavor transitions
occurring at high (H) and low (L) density along the supernova matter profile
can be simply embedded through the replacements phi-->phi+eps_H and
omega-->omega+eps_L, respectively, where eps_H and eps_L are specific linear
combinations of the eps_ab's. Similar replacements hold for eventual
oscillations in the Earth matter. From a phenomenological point of view, the
most relevant consequence is a possible uncontrolled bias (phi-->phi+eps_H) in
the value of the mixing angle phi inferred by inversion of supernova neutrino
data. Such a drawback, however, does not preclude the discrimination of the
neutrino mass spectrum hierarchy (direct or inverse) through supernova neutrino
oscillations.Comment: Text clarified, one figure added. To appear in PR
Origin of Life
The evolution of life has been a big enigma despite rapid advancements in the
fields of biochemistry, astrobiology, and astrophysics in recent years. The
answer to this puzzle has been as mind-boggling as the riddle relating to
evolution of Universe itself. Despite the fact that panspermia has gained
considerable support as a viable explanation for origin of life on the Earth
and elsewhere in the Universe, the issue remains far from a tangible solution.
This paper examines the various prevailing hypotheses regarding origin of life
like abiogenesis, RNA World, Iron-sulphur World, and panspermia; and concludes
that delivery of life-bearing organic molecules by the comets in the early
epoch of the Earth alone possibly was not responsible for kick-starting the
process of evolution of life on our planet.Comment: 32 pages, 8 figures,invited review article, minor additio
Deviation of Atmospheric Mixing from Maximal and Structure in the Leptonic Flavor Sector
I attempt to quantify how far from maximal one should expect the atmospheric
mixing angle to be given a neutrino mass-matrix that leads, at zeroth order, to
a nu_3 mass-eigenstate that is 0% nu_e, 50% nu_mu, and 50% nu_tau. This is done
by assuming that the solar mass-squared difference is induced by an
"anarchical" first order perturbation, an approach than can naturally lead to
experimentally allowed values for all oscillation parameters. In particular,
both |cos 2theta_atm| (the measure for the deviation of atmospheric mixing from
maximal) and |U_e3| are of order sqrt(Delta m^2_sol/Delta m^2_atm) in the case
of a normal neutrino mass-hierarchy, or of order Delta m^2_sol/Delta m^2_atm in
the case of an inverted one. Hence, if any of the textures analyzed here has
anything to do with reality, next-generation neutrino experiments can see a
nonzero cos 2theta_atm in the case of a normal mass-hierarchy, while in the
case of an inverted mass-hierarchy only neutrino factories should be able to
see a deviation of sin^2 2theta_atm from 1.Comment: 12 pages, no figures, references and acknowledgments adde
Density correlations and dynamical Casimir emission of Bogoliubov phonons in modulated atomic Bose-Einstein condensates
We present a theory of the density correlations that appear in an atomic
Bose-Einstein condensate as a consequence of the dynamical Casimir emission of
pairs of Bogoliubov phonons when the atom-atom scattering length is modulated
in time. Different regimes as a function of the temporal shape of the
modulation are identified and a simple physical picture of the phenomenon is
discussed. Analytical expressions for the density correlation function are
provided for the most significant limiting cases. This theory is able to
explain some unexpected features recently observed in numerical calculations of
Hawking radiation from analog black holes
Six sigma, absorptive capacity and organisational learning orientation
"This is an Accepted Manuscript of an article published by Taylor & Francis in International Journal of Production Research, available online: http://wwww.tandfonline.com/10.1080/00207543.2010.543175."The importance of the Six Sigma methodology in industry is growing constantly. However, there are few empirical studies that analyze the advantages of this methodology and its positive effects on organizational performance. The purpose of this paper is to extend understanding of the success of Six Sigma quality management initiatives by investigating the effects of Six Sigma teamwork and process management on absorptive capacity. It also seeks to understand the relation between absorptive capacity and organizational learning as two sources of sustainable competitive advantage. The information used comes from a larger study, the data for which were collected from a random sample of 237 European firms. Of these 237 organizations, 58 are Six Sigma organizations. Structural Equation Modelling (SEM) was used to test the hypotheses. The main findings show that Six Sigma teamwork and process management positively affect the development of absorptive capacity. A positive and significant relationship is also observed between absorptive capacity and organizational learning orientation. The findings of this study justify Six Sigma implementation in firms. This study provides us with an in-depth understanding of some structural elements that characterize the Six Sigma methodology, enabling us to provide an explanation for its success
Towards Machine Wald
The past century has seen a steady increase in the need of estimating and
predicting complex systems and making (possibly critical) decisions with
limited information. Although computers have made possible the numerical
evaluation of sophisticated statistical models, these models are still designed
\emph{by humans} because there is currently no known recipe or algorithm for
dividing the design of a statistical model into a sequence of arithmetic
operations. Indeed enabling computers to \emph{think} as \emph{humans} have the
ability to do when faced with uncertainty is challenging in several major ways:
(1) Finding optimal statistical models remains to be formulated as a well posed
problem when information on the system of interest is incomplete and comes in
the form of a complex combination of sample data, partial knowledge of
constitutive relations and a limited description of the distribution of input
random variables. (2) The space of admissible scenarios along with the space of
relevant information, assumptions, and/or beliefs, tend to be infinite
dimensional, whereas calculus on a computer is necessarily discrete and finite.
With this purpose, this paper explores the foundations of a rigorous framework
for the scientific computation of optimal statistical estimators/models and
reviews their connections with Decision Theory, Machine Learning, Bayesian
Inference, Stochastic Optimization, Robust Optimization, Optimal Uncertainty
Quantification and Information Based Complexity.Comment: 37 page
- …