765 research outputs found

    Purification of a Hydrophobic Elastin-Like Protein Toward Scale-Suitable Production of Biomaterials

    Get PDF
    Elastin-like proteins (ELPs) are polypeptides with potential applications as renewable bio-based high-performance polymers, which undergo a stimulus-responsive reversible phase transition. The ELP investigated in this manuscript—ELP[V2Y-45]—promises fascinating mechanical properties in biomaterial applications. Purification process scalability and purification performance are important factors for the evaluation of potential industrial-scale production of ELPs. Salt-induced precipitation, inverse transition cycling (ITC), and immobilized metal ion affinity chromatography (IMAC) were assessed as purification protocols for a polyhistidine-tagged hydrophobic ELP showing low-temperature transition behavior. IMAC achieved a purity of 86% and the lowest nucleic acid contamination of all processes. Metal ion leakage did not propagate chemical modifications and could be successfully removed through size-exclusion chromatography. The simplest approach using a high-salt precipitation resulted in a 60% higher target molecule yield compared to both other approaches, with the drawback of a lower purity of 60% and higher nucleic acid contamination. An additional ITC purification led to the highest purity of 88% and high nucleic acid removal. However, expensive temperature-dependent centrifugation steps are required and aggregation effects even at low temperatures have to be considered for the investigated ELP. Therefore, ITC and IMAC are promising downstream processes for biomedical applications with scale-dependent economical costs to be considered, while salt-induced precipitation may be a fast and simple alternative for large-scale bio-based polymer production

    Bubbles and Information: An Experiment

    Full text link

    AntagomiR directed against miR-20a restores functional BMPR2 signalling and prevents vascular remodelling in hypoxia-induced pulmonary hypertension

    Get PDF
    Aims Dysregulation of the bone morphogenetic protein receptor type 2 (BMPR2) is a hallmark feature that has been described in several forms of pulmonary hypertension. We recently identified the microRNA miR-20a within a highly conserved pathway as a regulator of the expression of BMPR2. To address the pathophysiological relevance of this pathway in vivo, we employed antagomiR-20a and investigated whether specific inhibition of miR-20a could restore functional levels of BMPR2 and, in turn, might prevent pulmonary arterial vascular remodelling. Methods and results For specific inhibition of miR-20a, cholesterol-modified RNA oligonucleotides (antagomiR-20a) were synthesized. The experiments in mice were performed by using the hypoxia-induced mouse model for pulmonary hypertension and animal tissues were analysed for right ventricular hypertrophy and pulmonary arterial vascular remodelling. Treatment with antagomiR-20a enhanced the expression levels of BMPR2 in lung tissues; moreover, antagomiR-20a significantly reduced wall thickness and luminal occlusion of small pulmonary arteries and reduced right ventricular hypertrophy. To assess BMPR2 signalling and proliferation, we performed in vitro experiments with human pulmonary arterial smooth muscle cells (HPASMCs). Transfection of HPASMCs with antagomiR-20a resulted in activation of downstream targets of BMPR2 showing increased activation of Id-1 and Id-2. Proliferation of HPASMCs was found to be reduced upon transfection with antagomiR-20a. Conclusion This is the first report showing that miR-20a can be specifically targeted in an in vivo model for pulmonary hypertension. Our data emphasize that treatment with antagomiR-20a restores functional levels of BMPR2 in pulmonary arteries and prevents the development of vascular remodellin

    Multicentre cross-sectional observational registry to monitor the safety of early discharge after rule-out of acute myocardial infarction by copeptin and troponin: the Pro-Core registry

    Get PDF
    Objectives: There is sparse information on the safety of early primary discharge from the emergency department (ED) after rule-out of myocardial infarction in suspected acute coronary syndrome (ACS). This prospective registry aimed to confirm randomised study results in patients at low-to-intermediate risk, with a broader spectrum of symptoms, across different institutional standards and with a range of local troponin assays including high-sensitivity cTn (hs-cTn), cardiac troponin (cTn) and point-of-care troponin (POC Tn). Design Prospective, multicentre European registry. Setting 18 emergency departments in nine European countries (Germany, Austria, Switzerland, France, Spain, UK, Turkey, Lithuania and Hungary) Participants: The final study cohort consisted of 2294 patients (57.2% males, median age 57 years) with suspected ACS. Interventions: Using the new dual markers strategy, 1477 patients were eligible for direct discharge, which was realised in 974 (42.5%) of patients. Main outcome measures: The primary endpoint was allcause mortality at 30 days. Results: Compared with conventional workup after dual marker measurement, the median length of ED stay was 60 min shorter (228 min, 95% CI: 219 to 239 min vs 288 min, 95% CI: 279 to 300 min) in the primary dual marker strategy (DMS) discharge group. All-cause mortality was 0.1% (95% CI: 0% to 0.6%) in the primary DMS discharge group versus 1.1% (95% CI: 0.6% to 1.8%) in the conventional workup group after dual marker measurement. Conventional workup instead of discharge despite negative DMS biomarkers was observed in 503 patients (21.9%) and associated with higher prevalence of ACS (17.1% vs 0.9%, p<0.001), cardiac diagnoses (55.2% vs 23.5%, p<0.001) and risk factors (p<0.01), but with a similar all-cause mortality of 0.2% (95% CI: 0% to 1.1%) versus primary DMS discharge (p=0.64). Conclusions Copeptin on top of cardiac troponin supports safe discharge in patients with chest pain or other symptoms suggestive of ACS under routine conditions with the use of a broad spectrum of local standard POC, conventional and high-sensitivity troponin assays. Trial registration number NCT02490969

    Cosmic spherules from Widerøefjellet, Sør Rondane Mountains (East Antarctica)

    Get PDF
    A newly discovered sedimentary accumulation of micrometeorites in the Sør Rondane Mountains of East Antarctica, close to the Widerøefjellet summit at ~2750 meter above sea level, is characterized in this work. The focus here lies on 2099 melted cosmic spherules larger than 200 μm, extracted from 3.2 kg of sampled sediment. Although the Widerøefjellet deposit shares similarities to the micrometeorite traps encountered in the Transantarctic Mountains, both subtle and more distinct differences in the physicochemical properties of the retrieved extraterrestrial particles and sedimentary host deposits are discernable (e.g., types of bedrock, degree of wind exposure, abundance of metal-rich particles). Unlike the Frontier Mountain and Miller Butte sedimentary traps, the size fraction below 240 μm indicates some degree of sorting at Widerøefjellet, potentially through the redistribution by wind, preferential alteration of smaller particles, or processing biases. However, the cosmic spherules larger than 300 μm appear largely unbiased following their size distribution, frequency by textural type, and bulk chemical compositions. Based on the available bedrock exposure ages for the Sør Rondane Mountains, extraterrestrial dust is estimated to have accumulated over a time span of ~1 to 3 Ma at Widerøefjellet. Consequently, the Widerøefjellet collection reflects a substantial reservoir to sample the micrometeorite influx over this time interval. Petrographic observations and 3D microscopic CT imaging are combined with chemical and triple-oxygen isotopic analyses of silicate-rich cosmic spherules larger than 325 μm. The major element composition of 49 cosmic spherules confirms their principally chondritic parentage. For 18 glassy, 15 barred olivine, and 11 cryptocrystalline cosmic spherules, trace element concentrations are also reported on. Based on comparison with evaporation experiments reported in literature and accounting for siderophile and chalcophile element losses during high-density phase segregation and ejection, the observed compositional sequence largely reflects progressive heating and evaporation during atmospheric passage accompanied by significant redox shifts, although the influence of (refractory) chondrite mineral constituents and terrestrial alteration cannot be excluded in all cases. Twenty-eight cosmic spherules larger than 325 μm analyzed for triple-oxygen isotope ratios confirm inheritance from mostly carbonaceous chondritic precursor materials (~55% of the particles). Yet, ~30% of the measured cosmic spherules and ~50% of all glassy cosmic spherules are characterized by oxygen isotope ratios above the terrestrial fractionation line, implying genetic links to ordinary chondrites and parent bodies currently unsampled by meteorites. The structural, textural, chemical, and isotopic characteristics of the cosmic spherules from the Sør Rondane Mountains, and particularly the high proportion of Mg-rich glass particles contained therein, imply a well-preserved and representative new sedimentary micrometeorite collection from a previously unstudied region in East Antarctica characterized by distinct geological and exposure histories

    The Muonium Atom as a Probe of Physics beyond the Standard Model

    Get PDF
    The observed interactions between particles are not fully explained in the successful theoretical description of the standard model to date. Due to the close confinement of the bound state muonium (M=μ+eM = \mu^+ e^-) can be used as an ideal probe of quantum electrodynamics and weak interaction and also for a search for additional interactions between leptons. Of special interest is the lepton number violating process of sponteanous conversion of muonium to antimuonium.Comment: 15 pages,6 figure

    Down regulation of E-Cadherin (ECAD) - a predictor for occult metastatic disease in sentinel node biopsy of early squamous cell carcinomas of the oral cavity and oropharynx

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prognostic factors in predicting occult lymph node metastasis in patients with head and neck squamous-cell carcinoma (HNSCC) are necessary to improve the results of the sentinel lymph node procedure in this tumour type. The E-Cadherin glycoprotein is an intercellular adhesion molecule in epithelial cells, which plays an important role in establishing and maintaining intercellular connections.</p> <p>Objectives</p> <p>To determine the value of the molecular marker E-Cadherin in predicting regional metastatic disease.</p> <p>Methods</p> <p>E-Cadherin expression in tumour tissue of 120 patients with HNSCC of the oral cavity and oropharynx were evaluated using the tissue microarray technique. 110 tumours were located in the oral cavity (91.7%; mostly tongue), 10 tumours in the oropharynx (8.3%). Intensity of E-Cadherin expression was quantified by the Intensity Reactivity Score (IRS). These results were correlated with the lymph node status of biopsied sentinel lymph nodes. Univariate and multivariate analysis was used to determine statistical significance.</p> <p>Results</p> <p>pT-stage, gender, tumour side and location did not correlate with lymph node metastasis. Differentiation grade (<it>p </it>= 0.018) and down regulation of E-Cadherin expression significantly correlate with positive lymph node status (<it>p </it>= 0.005) in univariate and multivariate analysis.</p> <p>Conclusion</p> <p>These data suggest that loss of E-cadherin expression is associated with increased lymhogeneous metastasis of HNSCC. E-cadherin immunohistochemistry may be used as a predictor for lymph node metastasis in squamous cell carcinoma of the oral cavity and oropharynx.</p> <p><b>Level of evidence: 2b</b></p
    corecore