6 research outputs found

    Mapping mRNA Expression of Glaucoma Genes in the Healthy Mouse Eye

    Get PDF
    Purpose/Aim: Many genes have been associated with primary open-angle glaucoma (POAG). Knowing exactly where they are expressed in the eye helps to unravel POAG pathology and to select optimal targets for intervention. We investigated whether RNA in situ hybridization (RNA-ISH) is a convenient technique to obtain detailed pan-ocular expression data of these genes. We tested this for four diverse candidate POAG genes, selected because of unclear ocular distribution (F5 and Dusp1) and relevance for potential new therapies (Tnf, Tgfβr3). Optn, a POAG gene with well-known ocular expression pattern served as control. Methods: We made a list of candidate glaucoma genes reported in genetic studies. A table of their ocular expression at the tissue level was compiled using publicly available microarray data (the ocular tissue database). To add cellular detail we performed RNA-ISH for Optn, Tnf, Tgfβr3, F5, and Dusp1 on eyes of healthy, 2-month-old, pigmented, and albino mice. Results: Expression of the Optn control matched with published immunohistochemistry data. Ocular expression of Tnf was generally low, with patches of higher Tnf expression, superficially in the corneal epithelium. F5 had a restricted expression pattern with high expression in the nonpigmented ciliary body epithelium and moderate expression in the peripapillary region. Tgfβr3 and Dusp1 showed ubiquitous expression. Conclusions: RNA-ISH is a suitable technique to determine the ocular expression pattern of POAG genes, adding meaningful cellular detail to existing microarray expression data. For instance, the high expression of F5 in the nonpigmented ciliary body epithelium suggests a role of this gene in aqueous humor dynamics and intraocular pressure. In addition, the ubiquitous expression of Tgfβr3 has implications for designing TGF-β-related glaucoma therapies, with respect to side effects. Creating pan-ocular expression maps of POAG genes with RNA-ISH will help to identify POAG pathways in speci

    Aqueous humor proteome of primary open angle glaucoma: A combined dataset of mass spectrometry studies

    Get PDF
    Analysis of the proteins of the aqueous humor can help to elucidate the complex pathogenesis of primary open angle glaucoma. Thanks to advances in liquid chromatography tandem mass spectrometry (LC-MS/MS) it is now possible to identify hundreds of proteins in individual aqueous humor samples without the need to pool samples. We performed a systematic literature search to find publications that performed LC-MS/MS on aqueous humor samples of glaucoma patients and of non-glaucomatous controls. Of the seven publications that we found, we obtained the raw data of three publications. These three studies used glaucoma patients that were clinically similar (i.e. undergoing glaucoma filtration surgery) which prompted us to reanalyse and combine their data. Raw data of each study were analysed separately with the latest version of MaxQuant (version v1.6.11.0). Outcome files were exported to Microsoft Excel. Samples belonging to the same patient were averaged to obtain peptide expression values per individual. We compared the overlap of identified proteins using the VLOOKUP function of Excel and a publicly available Venn diagram software. For the peptide sequences that can belong to multiple proteins (usually of the same protein family), we initially included all possibly identified proteins. This ensured that we would not miss a potential overlap between the studies due to differences in identified peptide counts. Next, of those peptides of which we compared multiple proteins, only one unique protein was included in our analysis i.e. either the protein overlapping bet

    The aqueous humor proteome of primary open angle glaucoma: An extensive review

    Get PDF
    Background: We reviewed the literature on the aqueous humor (AH) proteome of primary open angle glaucoma (POAG) patients in order to obtain deeper insight into the pathophysiology of POAG. Methods: We searched Pubmed and Embase up to May 2019 for studies that compared AH protein composition between POAG (cases) and cataract (controls). Untargeted studies (measuring the whole proteome, by LC-MS/MS) were divided into two subgroups depending on the type of surgery during which POAG AH was collected: glaucoma filtration surgery (subgroup 1) or cataract surgery (subgroup 2). We reanalyzed the raw data (subgroup 1) or combined the reported data (subgroup 2) to perform GO enrichment (GOrilla) and pathway analysis (Pathvisio). Results: Out of 93 eligible proteomic studies, seven were untargeted studies that identified 863 AH proteins. We observed 73 differentially expressed proteins in subgroup 1 and 87 differentially expressed proteins in subgroup 2. Both subgroups were characterized by activation of the acute immune response, dysregulation of folate metabolism and dysregulation of the selenium micronutrient network. For subgroup 1 but not for subgroup 2, proteins of the complement system were significantly enriched. Conclusion: AH proteome of POAG patients shows strong activation of the immune system. In addition, analysis suggests dysregulation of folate metabolism and dysregulation of selenium as underlying contributors. In view of their glaucoma surgery, POAG patients of subgroup 1 most likely are progressive whereas POAG patients in subgroup 2 most likely have stable POAG. The proteome difference between these subgroups suggests that the complement system plays a role in POAG progression

    Small RNA Sequencing of Aqueous Humor and Plasma in Patients With Primary Open-Angle Glaucoma

    No full text
    PURPOSE. Identify differentially expressed microRNAs (miRNAs) in aqueous humor (AH) and blood of primary open-angle glaucoma (POAG) patients by using small RNA sequencing. These may provide insight into POAG pathophysiology or serve as diagnostic biomarker.METHODS. AH and plasma of nine POAG patients and 10 cataract control patients were small RNA sequenced on Illumina NovaSeq 6000. Identification of gene transcripts targeted by differentially expressed miRNAs was done with miRWalk and MirPath. These targets were used for pathway analysis and Gene Ontology enrichment. Diagnostic potential was evaluated by receiver operating characteristics analysis.RESULTS. We identified 715 miRNAs in plasma and 62 miRNAs in AH. Plasma miRNA profile did not differ between POAG and control. In contrast, in AH, seven miRNAs were differentially expressed. Hsa-miR-30a-3p, hsa-miR-143-3p, hsa-miR-211-5p, and hsa-miR221-3p were upregulated, whereas hsa-miR-92a-3p, hsa-miR-45 la, and hsa-miR-486-5p were downregulated in POAG. Compared to previous studies, hsa-mir-143-3p, hsa-miR211-5p, and hsa-miR-221-3p were reported previously, strengthening their involvement in POAG whereas hsa-miR-30a-3p, hsa-miR-92a-3p, and hsa-miR-486-5p are implicated in POAG for the first time. Identified gene transcripts were involved in several pathways, some implicated in glaucoma before (e.g., TGF-P and neurotrophin signaling), whereas others are new (e.g., prolactin and apelin signaling). In respect to diagnostics, AH concentration of hsa-mir-143-3p had an area under the curve (AUC) of 0.889. Combined with hsa-miR-221-3p, AUC improved to 0.96.CONCLUSIONS. Small RNA sequencing identified seven differentially expressed miRNAs in AH of POAG patients. The differentially expressed miRNAs may be useful as POAG biomarkers or could become targets for new therapeutic strategies
    corecore