579 research outputs found

    Cosmological Relativity: A General-Relativistic Theory for the Accelerating Expanding Universe

    Get PDF
    Recent observations of distant supernovae imply, in defiance of expectations, that the universe growth is accelerating, contrary to what has always been assumed that the expansion is slowing down due to gravity. In this paper a general-relativistic cosmological theory that gives a direct relationship between distances and redshifts in an expanding universe is presented. The theory is actually a generalization of Hubble's law taking gravity into account by means of Einstein's theory of general relativity. The theory predicts that the universe can have three phases of expansion, decelerating, constant and accelerating, but it is shown that at present the first two cases are excluded, although in the past it had experienced them. Our theory shows that the universe now is definitely in the stage of accelerating expansion, confirming the recent experimental results

    An HST/WFPC Survey of Bright Young Clusters in M31. II. Photometry of Less Luminous Clusters in the Fields

    Get PDF
    We report on the properties of 89 low mass star clusters located in the vicinity of luminous young clusters (blue globulars) in the disk of M31. 82 of the clusters are newly detected. We have determined their integrated magnitudes and colors, based on a series of Hubble Space Telescope Wide Field/Planetary Camera 2 exposures in blue and red (HST filters F450W and F814W). The integrated apparent magnitudes range from F450W = 17.5 to 22.5, and the colors indicate a wide range of ages. Stellar color-magnitude diagrams for all clusters were obtained and those with bright enough stars were fit to theoretical isochrones to provide age estimates. The ages range from 12 Myr to >500 Myr. Reddenings, which average E(F450 - F814) = 0.59 with a dispersion of 0.21 magnitudes, were derived from the main sequence fitting for those clusters. Comparison of these ages and integrated colors with single population theoretical models with solar abundances suggests a color offset of 0.085 magnitudes at the ages tested. Estimated ages for the remaining clusters are based on their measured colors. The age-frequency diagram shows a steep decline of number with age, with a large decrease in number per age interval between the youngest and the oldest clusters detected.Comment: 20 pages, 9 figure

    Panoramic Views of the Cygnus Loop

    Get PDF
    We present a complete atlas of the Cygnus Loop supernova remnant in the light of [O III] (5007), H alpha, and [S II] (6717, 6731). Despite its shell-like appearance, the Cygnus Loop is not a current example of a Sedov-Taylor blast wave. Rather, the optical emission traces interactions of the supernova blast wave with clumps of gas. The surrounding interstellar medium forms the walls of a cavity through which the blast wave now propagates, including a nearly complete shell in which non-radiative filaments are detected. The Cygnus Loop blast wave is not breaking out of a dense cloud, but is instead running into confining walls. The interstellar medium dominates not only the appearance of the Cygnus Loop but also the continued evolution of the blast wave. If this is a typical example of a supernova remnant, then global models of the interstellar medium must account for such significant blast wave deceleration.Comment: 28 pages AAS Latex, 28 black+white figures, 6 color figures. To be published in The Astrophysical Journal Supplement Serie

    Increasing permeability of phospholipid bilayer membranes to alanine with synthetic α-aminophosphonate carriers

    Get PDF
    A series of aminophosphonates was synthesized, and their ability to carry alanine, a model hydrophilic molecule, across phospholipid bilayer membranes was evaluated. Aminophosphonates facilitate the membrane transport at moderate rates, which make them a suitable platform for the design of carriers for continuous drug release devices. © 2008 Elsevier Ltd. All rights reserved

    Lemaitre-Tolman-Bondi model and accelerating expansion

    Full text link
    I discuss the spherically symmetric but inhomogeneous Lemaitre-Tolman- Bondi (LTB) metric, which provides an exact toy model for an inhomogeneous universe. Since we observe light rays from the past light cone, not the expansion of the universe, spatial variation in matter density and Hubble rate can have the same effect on redshift as acceleration in a perfectly homogeneous universe. As a consequence, a simple spatial variation in the Hubble rate can account for the distant supernova data in a dust universe without any dark energy. I also review various attempts towards a semirealistic description of the universe based on the LTB model.Comment: Invited Review for a special Gen. Rel. Grav. issue on Dark Energy. 17 pages, 3 figure

    Speakable and unspeakable in cosmology: dark matter vs. gravitational self energies. Hubble's constant, the cosmological term and all that

    Full text link
    The inadequacy of the present cosmological picture is underlined. The central issue of energy and particles-photons number conservation is addressed. It is shown that consideration of gravitational self energy is paramount both for matter and for radiation to bring present data estimates of matter and radiation density and the radius of the universe towards agreement with the Planck scale quantities from which it should have consistently evolved. Particle creation is proven to play a fundamental role in the evolution of the Universe. It is argued that we might be living inside an expanding black hole

    A Century of Cosmology

    Full text link
    In the century since Einstein's anno mirabilis of 1905, our concept of the Universe has expanded from Kapteyn's flattened disk of stars only 10 kpc across to an observed horizon about 30 Gpc across that is only a tiny fraction of an immensely large inflated bubble. The expansion of our knowledge about the Universe, both in the types of data and the sheer quantity of data, has been just as dramatic. This talk will summarize this century of progress and our current understanding of the cosmos.Comment: Talk presented at the "Relativistic Astrophysics and Cosmology - Einstein's Legacy" meeting in Munich, Nov 2005. Proceedings will be published in the Springer-Verlag "ESO Astrophysics Symposia" series. 10 pages Latex with 2 figure

    The Tolman Surface Brightness Test for the Reality of the Expansion. IV. A Measurement of the Tolman Signal and the Luminosity Evolution of Early-Type Galaxies

    Get PDF
    We review a sample of the early literature in which the reality of the expansion is discussed, explain Hubble's reticence to accept the expansion as real, and contrast the Tolman surface brightness test with three other modern tests. We search for the Tolman surface brightness depression with redshift using the Hubble Space Telescope (HST) data from Paper III for 34 early-type galaxies from the three clusters Cl 1324+3011 (z=0.76), Cl 1604+4304 (z=0.90), and Cl 1604+4321 (z=0.92). Depressions of the surface brightness relative to the zero-redshift fiducial lines in the mean surface brightness, log linear radius diagrams of Paper I are found for all three clusters. Expressed as the exponent, n, in 2.5 log (1 + z)^n mag, the value of n for all three clusters is n = 2.59 +/- 0.17 in the R band and 3.37 +/- 0.13 in the I band for a q_o = 1/2 model. The sensitivity of the result to the assumed value of q_o is shown to be less than 23% between q_o = 0 and +1. For a true Tolman signal with n = 4, the luminosity evolution in the look-back time, expressed as the exponent in 2.5 log (1+z)^(4-n) mag, must then be between 1.72 to 1.19 in the R band and 0.94 to 0.45 in the I band. We show that this is precisely the range expected from the evolutionary models of Bruzual & Charlot. We conclude that the Tolman surface brightness test is consistent with the reality of the expansion. We have also used the high-redshift HST data to test the ``tired light'' speculation for a non-expansion model for the redshift. The HST data rule out the ``tired light'' model at a significance level of better than 10 sigma.Comment: 36 pages, 6 figures; accepted for publication in the Astronomical Journa

    Time variability of X-ray sources in the M 31 centre field

    Full text link
    We present an extension to our XMM-Newton X-ray source catalogue of M 31, containing 39 newly found sources. In order to classify and identify more of the sources we search for X-ray time variability in XMM-Newton archival data of the M 31 centre field. As a source list we used our extended catalogue based on observations covering the time span from June 2000 to July 2004. We then determined the flux or at least an upper limit at the source positions for each observation. Deriving the flux ratios for the different observations and searching for the maximum flux difference we determined variability factors. We also calculated the significance of the flux ratios. Using hardness ratios, X-ray variability and cross correlations with catalogues in the X-ray, optical, infrared and radio regimes, we detected three super soft source candidates, one supernova remnant and six supernova remnant candidates, one globular cluster candidate, three X-ray binaries and four X-ray binary candidates. Additionally we identified one foreground star candidate and classified fifteen sources with hard spectra, which may either be X-ray binaries or Crab-like supernova remnants in M 31 or background active galactic nuclei. The remaining five sources stay unidentified or without classification. Based on the time variability results we suggest six sources, which were formerly classified as "hard", to be X-ray binary candidates. The classification of one other source (XMMM31 J004236.7+411349) as a supernova remnant, has to be rejected due to the distinct time variability we found. We now classify this source as a foreground star.Comment: 13 pages, 6 figures, accepted for publication in A&

    Beyond a pale blue dot : how to search for possible bio-signatures on earth-like planets

    Full text link
    The Earth viewed from outside the Solar system would be identified merely like a pale blue dot, as coined by Carl Sagan. In order to detect possible signatures of the presence of life on a second earth among several terrestrial planets discovered in a habit-able zone, one has to develop and establish a methodology to characterize the planet as something beyond a mere pale blue dot. We pay particular attention to the periodic change of the color of the dot according to the rotation of the planet. Because of the large-scale inhomogeneous distribution of the planetary surface, the reflected light of the dot comprises different color components corresponding to land, ocean, ice, and cloud that cover the surface of the planet. If we decompose the color of the dot into several principle components, in turn, one can identify the presence of the different surface components. Furthermore, the vegetation on the earth is known to share a remarkable reflection signature; the reflection becomes significantly enhanced at wave-lengths longer than 760nm, which is known as a red-edge of the vegetation. If one can identify the corresponding color signature in a pale blue dot, it can be used as a unique probe of the presence of life. I will describe the feasibility of the methodology for future space missions, and consider the direction towards astrobiology from an astrophysicist's point of view.Comment: 11 pages, 5 figures, published in Yamagishi A., Kakegawa T., Usui T. (eds) Astrobiology. Springer, Singapore (2019
    • …
    corecore