242 research outputs found

    Loschmidt echo for a chaotic oscillator

    Full text link
    Chaotic dynamics of a nonlinear oscillator is considered in the semiclassical approximation. The Loschmidt echo is calculated for a time scale which is of the power law in semiclassical parameter. It is shown that an exponential decay of the Loschmidt echo is due to a Lyapunov exponent and it has a pure classical nature.Comment: Submit to PR

    Neel Order and Electron Spectral Functions in the Two-Dimensional Hubbard Model: a Spin-Charge Rotating Frame Approach

    Full text link
    Using recently developed quantum SU(2)xU(1) rotor approach, that provides a self-consistent treatment of the antiferromagnetic state we have performed electronic spectral function calculations for the Hubbard model on the square lattice. The collective variables for charge and spin are isolated in the form of the space-time fluctuating U(1) phase field and rotating spin quantization axis governed by the SU(2) symmetry, respectively. As a result interacting electrons appear as composite objects consisting of bare fermions with attached U(1) and SU(2) gauge fields. This allows us to write the fermion Green's function in the space-time domain as the product CP^1 propagator resulting from the SU(2) gauge fields, U(1) phase propagator and the pseudo-fermion correlation function. As a result the problem of calculating the spectral line shapes now becomes one of performing the convolution of spin, charge and pseudo-fermion Green's functions. The collective spin and charge fluctuations are governed by the effective actions that are derived from the Hubbard model for any value of the Coulomb interaction. The emergence of a sharp peak in the electron spectral function in the antiferromagnetic state indicates the decay of the electron into separate spin and charge carrying particle excitations.Comment: 16 pages, 5 figures, submitted to Phys. Rev.

    Piolhos hematófagos podem disseminar infecção pelo Trypanosoma cruzi em babuínos

    Get PDF
    Trypanosoma cruzi (Schyzotrypanum, Chagas, 1909), and Chagas disease are endemic in captive-reared baboons at the Southwest Foundation for Biomedical Research, San Antonio, Texas. We obtained PCR amplification products from DNA extracted from sucking lice collected from the hair and skin of T. cruzi-infected baboons, with specific nested sets of primers for the protozoan kinetoplast DNA, and nuclear DNA. These products were hybridized to their complementary internal sequences. Selected sequences were cloned and sequencing established the presence of T. cruzi nuclear DNA, and minicircle kDNA. Competitive PCR with a kDNA set of primers determined the quantity of approximately 23.9 ± 18.2 T. cruzi per louse. This finding suggests that the louse may be a vector incidentally contributing to the dissemination of T. cruzi infection in the baboon colony.As infecçÔes pelo Trypanosoma cruzi e a doença de Chagas sĂŁo endĂȘmicas em babuĂ­nos (Papio hamadryas) reproduzidos em cativeiro na Southwest Foundation for Biomedical Research, em Santo Antonio, Texas. NĂłs obtivemos produtos de amplificação por PCR do DNA extraĂ­do de piolhos colhidos do cabelo e da pele de babuĂ­nos chagĂĄsicos, com primers aneladores especĂ­ficos para DNAs nuclear e de cinetoplasto do protozoĂĄrio. Esses produtos foram hibridizados com suas respectivas seqĂŒĂȘncias internas complementares. SeqĂŒĂȘncias selecionadas foram clonadas e o sequenciamento demonstrou a presença de DNA nuclear de T. cruzi, e de minicĂ­rculo de kDNA. A PCR competitiva com primers de kDNA determinou a quantidade de aproximadamente 23.9 ± 18.2 T. cruzi por piolho. Este achado sugere que o piolho pode ser um vetor contribuindo para a disseminação de T. cruzi na colĂŽnia de babuĂ­nos

    Methane Flux in Cropland and Adjacent Riparian Buff ers with Different Vegetation Covers

    Get PDF
    While water quality functions of conservation buffers established adjacent to cropped fields have been widely documented, the relative contribution of these re-established perennial plant systems to greenhouse gases has not been completely documented. In the case of methane (CH(4)), these systems have the potential to serve as sinks of CH(4) or may provide favorable conditions for CH(4) production. This study quantifies CH(4) flux from soils of riparian buffer systems comprised of three vegetation types and compares these fluxes with those of adjacent crop fields. We measured soil properties and diel and seasonal variations of CH(4) flux in 7 to 17 yr-old re-established riparian forest buffers, warm-season and cool-season grass filters, and an adjacent crop field located in the Bear Creek watershed in central Iowa. Forest buffer and grass filter soils had significantly lower bulk density (P \u3c 0.01); and higher pH (P \u3c 0.01), total carbon (TC) (P \u3c 0.01), and total nitrogen (TN) (P \u3c 0.01) than crop field soils. There was no significant relationship between CH(4) flux and soil moisture or soil temperature among sites within the range of conditions observed. Cumulative CH(4) flux was -0.80 kg CH(4)-C ha(-1) yr(-1) in the cropped field, -0.46 kg CH(4)-C ha(-1) yr(-1) within the forest buffers, and 0.04 kg CH(4)-C ha(-1) yr(-1) within grass filters, but difference among vegetation covers was not significant. Results suggest that CH(4) flux was not changed after establishment of perennial vegetation on cropped soils, despite significant changes in soil properties

    Effects of Boson Dispersion in Fermion-Boson Coupled Systems

    Full text link
    We study the nonlinear feedback in a fermion-boson system using an extension of dynamical mean-field theory and the quantum Monte Carlo method. In the perturbative regimes (weak-coupling and atomic limits) the effective interaction among fermions increases as the width of the boson dispersion increases. In the strong coupling regime away from the anti-adiabatic limit, the effective interaction decreases as we increase the width of the boson dispersion. This behavior is closely related with complete softening of the boson field. We elucidate the parameters that control this nonperturbative region where fluctuations of the dispersive bosons enhance the delocalization of fermions.Comment: 14 pages RevTeX including 12 PS figure

    Influence of a Uniform Current on Collective Magnetization Dynamics in a Ferromagnetic Metal

    Get PDF
    We discuss the influence of a uniform current, j⃗\vec{j} , on the magnetization dynamics of a ferromagnetic metal. We find that the magnon energy Ï”(q⃗)\epsilon(\vec{q}) has a current-induced contribution proportional to q⃗⋅J⃗\vec{q}\cdot \vec{\cal J}, where J⃗\vec{\cal J} is the spin-current, and predict that collective dynamics will be more strongly damped at finite j⃗{\vec j}. We obtain similar results for models with and without local moment participation in the magnetic order. For transition metal ferromagnets, we estimate that the uniform magnetic state will be destabilized for j≳109Acm−2j \gtrsim 10^{9} {\rm A} {\rm cm}^{-2}. We discuss the relationship of this effect to the spin-torque effects that alter magnetization dynamics in inhomogeneous magnetic systems.Comment: 12 pages, 2 figure

    Lattice methods and the nuclear few- and many-body problem

    Full text link
    We begin with a brief overview of lattice calculations using chiral effective field theory and some recent applications. We then describe several methods for computing scattering on the lattice. After that we focus on the main goal, explaining the theory and algorithms relevant to lattice simulations of nuclear few- and many-body systems. We discuss the exact equivalence of four different lattice formalisms, the Grassmann path integral, transfer matrix operator, Grassmann path integral with auxiliary fields, and transfer matrix operator with auxiliary fields. Along with our analysis we include several coding examples and a number of exercises for the calculations of few- and many-body systems at leading order in chiral effective field theory.Comment: 20 pages, 3 figures, Submitted to Lect. Notes Phys., "An advanced course in computational nuclear physics: Bridging the scales from quarks to neutron stars", M. Hjorth-Jensen, M. P. Lombardo, U. van Kolck, Editor

    Bosonization in Particle Physics

    Get PDF
    Path integral techniques in collective fields are shown to be a useful analytical tool to reformulate a field theory defined in terms of microscopic quark (gluon) degrees of freedom as an effective theory of collective boson (meson) fields. For illustrations, the path integral bosonization approach is applied to derive a (non)linear sigma model from a Nambu-Jona-Lasinio (NJL) quark model. The method can be extended to include higher order derivative terms in meson fields or heavy-quark symmetries. It is also approximately applicable to QCD.Comment: 12 pages, LaTeX, uses lamuphys.sty, 5 LaTeX figures, talk given at the Workshop "Field Theoretical Tools in Polymer and Particle Physics", University Wuppertal, June 17-19, 199
    • 

    corecore