1,571 research outputs found

    New Lessons from an Old Park

    Get PDF
    Recent restoration projects in New York\u27s Central Park have produced a series of notable designs carried out under the leadership of the Parks Department and Central Park Administrator Elizabeth Barlow

    Determination of screened Coulomb repulsion energies in organic molecular crystals: A real space approach

    Full text link
    We present a general method for determining screened Coulomb parameters in molecular assemblies, in particular organic molecular crystals. This allows us to calculate the interaction parameters used in a generalized Hubbard model description of correlated organic materials. In such a model only the electrons in levels close to the Fermi level are included explicitly, while the effect of all other electrons is included as a renormalization of the model parameters. For the Coulomb integrals this renormalization is mainly due to screening. For molecular materials we can split the screening into intra- and inter-molecular screening. Here we demonstrate how the inter-molecular screening can be calculated by modeling the molecules by distributed point-polarizabilities and solving the resulting self-consistent electrostatic screening problem in real space. For the example of the quasi one-dimensional molecular metal TTF-TCNQ we demonstrate that the method gives remarkably accurate results.Comment: Submitted to Special Issue - ISCOM 2009 - Physica B Condensed Matte

    Spectral functions for strongly correlated 5f-electrons

    Full text link
    We calculate the spectral functions of model systems describing 5f-compounds adopting Cluster Perturbation Theory. The method allows for an accurate treatment of the short-range correlations. The calculated excitation spectra exhibit coherent 5f bands coexisting with features associated with local intra-atomic transitions. The findings provide a microscopic basis for partial localization. Results are presented for linear chains.Comment: 10 Page

    Optical sum rule in metals with a strong interaction

    Full text link
    The restricted optical sum rule and its dependence on the temperature, a superconducting gap and the cutoff energy have been investigated. As known this sum rule depends on the cutoff energy and the relaxation rate even for a homogeneous electron gas interacting with impurities or phonons. It is shown here that additional dependence of the spectral weight on a superconducting gap is very small in this model and this effect disappears totally when the relaxation rate is equal zero. The model metal with a single band is considered in details. It is well known that for this model there is the dependence of the sum rule on the temperature and the energy gap even in the case when the relaxation is absent. This dependence exists due to the smearing of the electron distribution function and it is expressed in the terms of Sommerfeld expansion. Here it is shown that these effects are considerably smaller than that of related with the relaxation rate if the band width is larger than the average phonon frequency. It is shown also that the experimental data about the temperature dependence of the spectral weight for the high- materials can be successfully explained in the framework approach based on the temperature dependence of the relaxation rateComment: 13 pages, 7 figures, the talk given on Internatinal coference on theoretical physics, april 11-16,2005, Mosco

    Coulomb parameters and photoemission for the molecular metal TTF-TCNQ

    Full text link
    We employ density-functional theory to calculate realistic parameters for an extended Hubbard model of the molecular metal TTF-TCNQ. Considering both intra- and intermolecular screening in the crystal, we find significant longer-range Coulomb interactions along the molecular stacks, as well as inter-stack coupling. We show that the long-range Coulomb term of the extended Hubbard model leads to a broadening of the spectral density, likely resolving the problems with the interpretation of photoemission experiments using a simple Hubbard model only.Comment: 4 pages, 2 figure

    Weak-coupling expansions for the attractive Holstein and Hubbard models

    Full text link
    Weak-coupling expansions (conserving approximations) are carried out for the attractive Holstein and Hubbard models (on an infinite-dimensional hypercubic lattice) that include all bandstructure and vertex correction effects. Quantum fluctuations are found to renormalize transition temperatures by factors of order unity, but may be incorporated into the superconducting channel of Migdal-Eliashberg theory by renormalizing the phonon frequency and the interaction strength.Comment: 10 pages, (five figures available from the author by request) typeset with ReVTeX, preprint NSF-ITP-93-10
    • …
    corecore