44 research outputs found

    Betula mcallisteri sp. nov. (sect. Acuminatae, Betulaceae), a new diploid species overlooked in the wild and in cultivation, and its relation to the widespread B. luminifera

    Get PDF
    Taxa are traditionally identified using morphological proxies for groups of evolutionarily isolated populations. These proxies are common characters deemed by taxonomists as significant. However, there is no general rule on which character or sets of characters are appropriate to circumscribe taxa, leading to discussions and uncertainty. Birch species are notoriously hard to identify due to strong morphological variability and factors such as hybridization and the existence of several ploidy levels. Here, we present evidence for an evolutionarily isolated line of birches from China that are not distinguishable by traditionally assumed taxon recognition proxies, such as fruit or leaf characters. We have discovered that some wild material in China and some cultivated in the Royal Botanic Gardens Edinburgh, formerly recognized as Betula luminifera, differ from other individuals by having a peeling bark and a lack of cambial fragrance. We use restriction site-associated DNA sequencing and flow cytometry to study the evolutionary status of the unidentified Betula samples to assess the extent of hybridization between the unidentified Betula samples and typical B. luminifera in natural populations. Molecular analyses show the unidentified Betula samples as a distinct lineage and reveal very little genetic admixture between the unidentified samples and B. luminifera. This may also be facilitated by the finding that B. luminifera is tetraploid, while the unidentified samples turned out to be diploid. We therefore conclude that the samples represent a yet unrecognized species, which is here described as Betula mcallisteri.Copyright © 2023 Zhang, Ding, Holstein and Wang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. The attached file is the published version of the article.NHM Repositor

    Rapid mapping of visual receptive fields by filtered back-projection: application to multi-neuronal electrophysiology and imaging

    Get PDF
    Neurons in the visual system vary widely in the spatiotemporal properties of their receptive fields (RFs), and understanding these variations is key to elucidating how visual information is processed. We present a new approach for mapping RFs based on the filtered back projection (FBP), an algorithm used for tomographic reconstructions. To estimate RFs, a series of bars were flashed across the retina at pseudo‐random positions and at a minimum of five orientations. We apply this method to retinal neurons and show that it can accurately recover the spatial RF and impulse response of ganglion cells recorded on a multi‐electrode array. We also demonstrate its utility for in vivo imaging by mapping the RFs of an array of bipolar cell synapses expressing a genetically encoded Ca2+ indicator. We find that FBP offers several advantages over the commonly used spike‐triggered average (STA): (i) ON and OFF components of a RF can be separated; (ii) the impulse response can be reconstructed at sample rates of 125 Hz, rather than the refresh rate of a monitor; (iii) FBP reveals the response properties of neurons that are not evident using STA, including those that display orientation selectivity, or fire at low mean spike rates; and (iv) the FBP method is fast, allowing the RFs of all the bipolar cell synaptic terminals in a field of view to be reconstructed in under 4 min. Use of the FBP will benefit investigations of the visual system that employ electrophysiology or optical reporters to measure activity across populations of neurons

    GT2010-23809 SINTERING BEHAVIOR OF PLASMA-SPRAYED Sm 2 Zr 2 O 7 COATING

    Get PDF
    ABSTRACT Plasma-sprayed thermal barrier coating (TBC) systems are widely used in gas turbine blades to increase turbine entry temperature (TET) and better efficiency. Yttria stabilized zirconia (YSZ) has been the conventional thermal barrier coating material because of its low thermal conductivity, relative high thermal expansion coefficient and good corrosion resistance. However the YSZ coatings can hardly fulfill the harsh requirements in future for higher reliability and the lower thermal conductivity at higher temperatures. Among the interesting TBC candidates, materials with pyrochlore structure show promising thermo-physical properties for use at temperatures exceeding 1200 ºC. Sm 2 Zr 2 O 7 bulk material does not only have high temperature stability, sintering resistance but also lower thermal conductivity and higher thermal expansion coefficient. The sintering characteristics of ceramic thermal barrier coatings under high temperature conditions are complex phenomena. In this paper, samarium zirconate (Sm 2 Zr 2 O 7 , SZ) powder and coatings were prepared by solid state reaction and atmosphere plasma spraying process, respectively. The microstructure development of coatings derived from sintering after heat-treated at 1200-1500 ºC for 50 h have been investigated. The microstructure was examined by scanning electron microscopy (SEM) and the grain growth was analyzed in this paper as well

    Crossover inhibition generates sustained visual responses in the inner retina

    Get PDF
    In daylight, the input to the retinal circuit is provided primarily by cone photoreceptors acting as band-pass filters, but the retinal output also contains neuronal populations transmitting sustained signals. Using in vivo imaging of genetically encoded calcium reporters, we investigated the circuits that generate these sustained channels within the inner retina of zebrafish. In OFF bipolar cells, sustained transmission was found to depend on crossover inhibition from the ON pathway through GABAergic amacrine cells. In ON bipolar cells, the amplitude of low-frequency signals was regulated by glycinergic amacrine cells, while GABAergic inhibition regulated the gain of band-pass signals. We also provide the first functional description of a subset of sustained ON bipolar cells in which synaptic activity was suppressed by fluctuations at frequencies above ∼0.2 Hz. These results map out the basic circuitry by which the inner retina generates sustained visual signals and describes a new function of crossover inhibition

    Functional Compartmentalization within Starburst Amacrine Cell Dendrites in the Retina

    No full text
    Summary: Dendrites in many neurons actively compute information. In retinal starburst amacrine cells, transformations from synaptic input to output occur within individual dendrites and mediate direction selectivity, but directional signal fidelity at individual synaptic outputs and correlated activity among neighboring outputs on starburst dendrites have not been examined systematically. Here, we record visually evoked calcium signals simultaneously at many individual synaptic outputs within single starburst amacrine cells in mouse retina. We measure visual receptive fields of individual output synapses and show that small groups of outputs are functionally compartmentalized within starburst dendrites, creating distinct computational units. Inhibition enhances compartmentalization and directional tuning of individual outputs but also decreases the signal-to-noise ratio. Simulations suggest, however, that the noise underlying output signal variability is well tolerated by postsynaptic direction-selective ganglion cells, which integrate convergent inputs to acquire reliable directional information. : Poleg-Polsky et al. examine the directional signaling fidelity of individual synapses on starburst amacrine cell dendrites. They identify functionally and morphologically distinct signaling compartments within SAC dendrites and show that inhibition enhances reliable decoding by postsynaptic direction-selective ganglion cells. Keywords: retina, synaptic transmission, amacrine cell, correlation, visual processing, inhibition, direction selectivit

    Semantic Framework based Query Generation for Temporal Question Answering over Knowledge Graphs

    Full text link
    Answering factual questions with temporal intent over knowledge graphs (temporal KGQA) attracts rising attention in recent years. In the generation of temporal queries, existing KGQA methods ignore the fact that some intrinsic connections between events can make them temporally related, which may limit their capability. We systematically analyze the possible interpretation of temporal constraints and conclude the interpretation structures as the Semantic Framework of Temporal Constraints, SF-TCons. Based on the semantic framework, we propose a temporal question answering method, SF-TQA, which generates query graphs by exploring the relevant facts of mentioned entities, where the exploring process is restricted by SF-TCons. Our evaluations show that SF-TQA significantly outperforms existing methods on two benchmarks over different knowledge graphs.Comment: Accepted to EMNLP 2022, v3 is resubmitted to correct the misspelled author nam

    Photothermal Effect-Triggered Drug Release from Hydrogen Bonding-Enhanced Polymeric Micelles

    No full text
    Incorporation of noncovalent interactions into hydrophobic cores of polymeric micelles provides the micelles with enhanced physical stability and drug loading efficiency, however, it also creates obstacles for drug release due to the strong interactions between carriers and drugs. Herein, a series of amphiphilic block copolymers based on poly­(ethylene glycol)-<i>b</i>-poly­(l-lysine) (mPEG-<i>b</i>-PLL) with similar chemical structures, while different hydrogen bonding donors (urethane, urea, and thiourea groups) are synthesized, and their capacities for codelivery of anticancer drug (e.g., doxorubicin) and photothermal agent (e.g., indocyanine green) are investigated. The resulting hybrid micelles display decreased critical micelle concentrations (CMCs) and enhanced micelle stabilities due to the hydrogen bonding between urea groups in the polymers. Moreover, the strong hydrogen bonds between the urea/thiourea groups and drugs provide the carriers with enhanced drug loading efficiencies, decreased micelle sizes, however, slower drug release profiles as well. When exposed to the near-infrared laser irradiation, destabilization of the hydrogen bonding through photothermal effect triggers fast and controlled drug releases from the micelles, which dramatically promotes the aggregation of the drugs in the nuclei, resulting in an enhanced anticancer activity. These results demonstrate that the hydrogen bonding-enhanced micelles are promising carriers for controllable chemo-photothermal synergistic therapy

    Population dynamics of an acinetobacter baumannii clonal complex during colonization of patients

    No full text
    Acinetobacter baumannii has emerged as one of the leading pathogens causing hospital-acquired infection. The success of A. baumannii as a pathogen has to a large extent been attributed to its capacity to remodel its genome. Several major epidemic clonal complexes of A. baumannii spread across different health care facilities around the world, each of which contains a subset of diversified strains. However, little is known about the population dynamics during colonization of A. baumannii within hosts. Here, whole-genome sequencing was used to analyze population dynamics of A. baumannii strains isolated from a group of patients at different time points as well as from different sites of a particular patient. Seven out of nine of the sampled A. baumannii strains belonged to the international clone II (CC92 clonal complex). While the A. baumannii strains were found to be stable in three patients, there was a change of A. baumannii strains in one patient. Comparative genomic analysis revealed that the accessory genome of these strains contained a large set of virulence-encoding genes and these virulence factors might play a role in determining population dynamics. Microscale genome modification has been revealed by analysis of single nucleotide polymorphisms (SNPs) between A. baumannii strains isolated from the same patient. Parallel evolutionary traits have been observed during genome diversification when A. baumannii colonize in different patients. Our study suggested that both antibiotic usage and host environment might impose selective forces that drive the rapid adaptive evolution in colonizing A. baumannii.Published versio
    corecore