456 research outputs found

    A study on vortex flow control on inlet distortion in the re-engined 727-100 center inlet duct using computational fluid dynamics

    Get PDF
    Computational fluid dynamics was used to investigate the management of inlet distortion by the introduction of discrete vorticity sources at selected locations in the inlet for the purpose of controlling secondary flow. These sources of vorticity were introduced by means of vortex generators. A series of design observations were made concerning the importance of various vortex generator design parameters in minimizing engine face circumferential distortion. The study showed that vortex strength, generator scale, and secondary flow field structure have a complicated and interrelated influence on the engine face distortion, over and above the initial geometry and arrangement of the generators. The installed vortex generator performance was found to be a function of three categories of variables: the inflow conditions, the aerodynamic characteristics associated with the inlet duct, and the design parameters related to the geometry, arrangement, and placement of the vortex generators within the outlet duct itself

    Stability of Transonic Shock Solutions for One-Dimensional Euler-Poisson Equations

    Full text link
    In this paper, both structural and dynamical stabilities of steady transonic shock solutions for one-dimensional Euler-Poission system are investigated. First, a steady transonic shock solution with supersonic backgroumd charge is shown to be structurally stable with respect to small perturbations of the background charge, provided that the electric field is positive at the shock location. Second, any steady transonic shock solution with the supersonic background charge is proved to be dynamically and exponentially stable with respect to small perturbation of the initial data, provided the electric field is not too negative at the shock location. The proof of the first stability result relies on a monotonicity argument for the shock position and the downstream density, and a stability analysis for subsonic and supersonic solutions. The dynamical stability of the steady transonic shock for the Euler-Poisson equations can be transformed to the global well-posedness of a free boundary problem for a quasilinear second order equation with nonlinear boundary conditions. The analysis for the associated linearized problem plays an essential role

    Mutations within the tyrosine kinase domain of EGFR gene specifically occur in lung adenocarcinoma patients with a low exposure of tobacco smoking

    Get PDF
    Somatically acquired mutations in the epidermal growth factor receptor (EGFR) gene in lung cancer are associated with significant clinical responses to gefitinib, a tyrosine kinase inhibitor that targets EGFR. We screened the EGFR in 469 resected tumours of patients with lung cancer, which included 322 adenocarcinomas, 102 squamous cell carcinomas, 27 large cell carcinomas, 13 small cell carcinomas, and five other cell types. PCR with a specific condition was performed to identify any deletion in exon 19, while mutant-allele-specific amplification was performed to identify a mutation in codon 858 of exon 21. EGFR mutations were found in 136 cases (42.2%) with adenocarcinoma, in one case with large cell carcinoma, and in one case with pleomorphic carcinoma. An in-frame deletion in exon 19 was found in 62 cases while an L858R mutation was found in 77 cases. In the 322 cases with adenocarcinoma, these mutations were more frequently found in women than in men (P=0.0004), in well differentiated tumours than in poorly differentiated tumours (P=0.0014), and in patients who were never smokers than in patients who were current/former smokers (P<0.0001). The mutation was more frequently observed in patients who smoked ⩽20 pack-year, and in patients who quit at least 20 years before the date of diagnosis for lung cancer. The K-ras mutations were more frequently found in smokers than in never smokers, and in high-dose smokers than in low-dose smokers. In conclusion, the mutations within the tyrosine kinase domain of EGFR were found to specifically occur in lung adenocarcinoma patients with a low exposure of tobacco smoking

    A chromosomelevel genome assembly of the Asian arowana, Scleropages formosus

    Get PDF
    Asian arowana (Scleropages formosus), an ancient teleost belonging to the Order Osteoglossomorpha, has been a valuable ornamental fish with some varieties. However, its biological studies and breeding germplasm have been remarkably limited by the lack of a reference genome. To solve these problems, here we report high-quality genome sequences of three common varieties of Asian arowana (the golden, red and green arowana). We firstly generated a chromosome-level genome assembly of the golden arowana, on basis of the genetic linkage map constructed with the restriction site-associated DNA sequencing (RAD-seq). In addition, we obtained draft genome assemblies of the red and green varieties. Finally, we annotated 22,016, 21,256 and 21,524 protein-coding genes in the genome assemblies of golden, red and green varieties respectively. Our data were deposited in publicly accessible repositories to promote biological research and molecular breeding of Asian arowana

    A colliding maxillary sinus cancer of adenosquamous carcinoma and small cell neuroendocrine carcinoma - a case report with EGFR copy number analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Small cell neuroendocrine carcinoma (SNEC) of maxillary sinus is a rare and aggressive malignancy. A tumor with squamous cell carcinoma, adenocarcinoma and SNEC co-existence is extremely rare.</p> <p>Case presentation</p> <p>We present a colliding tumor of squamous cell, adenocarcinoma and SNEC in maxillary sinus. The clinical features, diagnosis and EGFR flourescence in situ hybridization (FISH) study are presented. A 52-year-old female had a 1-month history of progressing left cheek swelling and purulent rhinorrhea. Magnetic resonance imaging showed a tumor involving left maxilla and orbital floor. Excision of tumor was done and the defect was reconstructed with free flap. The pathology revealed a malignant tumor composed of squamous cell carcinoma, adenocarcinoma and SNEC components. EGFR FISH study showed no gene amplification in 3 components of this tumor. The tumor progressed rapidly and the patient expired at 8 months after surgery.</p> <p>Conclusion</p> <p>A colliding tumor of squamous cell, adenocarcinoma and neuroendocrine carcinoma in maxillary sinus was aggressive in behavior and the treatment response was poor due to the complexity of tumor.</p

    Imbalanced Superfluid Phase of a Trapped Fermi Gas in the BCS-BEC Crossover Regime

    Full text link
    We theoretically investigate the ground state of trapped neutral fermions with population imbalance in the BCS-BEC crossover regime. On the basis of the single-channel Hamiltonian, we perform full numerical calculations of the Bogoliubov-de Gennes equation coupled with the regularized gap and number equations. The zero-temperature phase diagram in the crossover regime is presented, where the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) pairing state governs the weak-coupling BCS region of a resonance. It is found that the FFLO oscillation vanishes in the BEC side, in which the system under population imbalance turns into a phase separation (PS) between locally binding superfluid and fully polarized spin domains. We also demonstrate numerical calculations with a large particle number O(10^5), comparable to that observed in recent experiments. The resulting density profile on a resonance yields the PS, which is in good agreement with the recent experiments, while the FFLO modulation exists in the pairing field. It is also proposed that the most favorable location for the detection of the FFLO oscillation is in the vicinity of the critical population imbalance in the weak coupling BCS regime, where the oscillation periodicity becomes much larger than the interparticle spacing. Finally, we analyze the radio-frequency (RF) spectroscopy in the imbalanced system. The clear difference in the RF spectroscopy between BCS and BEC sides reveals the structure of the pairing field and local ``magnetization''.Comment: 16 pages, 13 figures, replaced by the version to appear in J. Phys. Soc. Jp

    A novel RING finger protein, Znf179, modulates cell cycle exit and neuronal differentiation of P19 embryonal carcinoma cells

    Get PDF
    Znf179 is a member of the RING finger protein family. During embryogenesis, Znf179 is expressed in a restricted manner in the brain, suggesting a potential role in nervous system development. In this report, we show that the expression of Znf179 is upregulated during P19 cell neuronal differentiation. Inhibition of Znf179 expression by RNA interference significantly attenuated neuronal differentiation of P19 cells and a primary culture of cerebellar granule cells. Using a microarray approach and subsequent functional annotation analysis, we identified differentially expressed genes in Znf179-knockdown cells and found that several genes are involved in development, cellular growth, and cell cycle control. Flow cytometric analyses revealed that the population of G0/G1 cells decreased in Znf179-knockdown cells. In agreement with the flow cytometric data, the number of BrdU-incorporated cells significantly increased in Znf179-knockdown cells. Moreover, in Znf179-knockdown cells, p35, a neuronal-specific Cdk5 activator that is known to activate Cdk5 and may affect the cell cycle, and p27, a cell cycle inhibitor, also decreased. Collectively, these results show that induction of the Znf179 gene may be associated with p35 expression and p27 protein accumulation, which lead to cell cycle arrest in the G0/G1 phase, and is critical for neuronal differentiation of P19 cells
    corecore