
Neural Learning of Heuristic Functions
for General Game Playing

Leo , �Ghignone RossellaCancelliere

University of Turin, Department of Computer Science

Abstract. The proposed model represents an original approach to gen-
eral game playing, and aims at creating a player able to develop a strat-
egy using as few requirements as possible, in order to achieve the maxi-
mum generality. The main idea is to modify the known minimax search
algorithm removing its task-specific component, namely the heuristic
function: this is replaced by a neural network trained to evaluate the
game states using results from previous simulated matches. A method
for simulating matches and extracting training examples from them is
also proposed, completing the automatic procedure for the setup and
improvement of the model. Part of the algorithm for extracting training
examples is the Backward Iterative Deepening Search, a new original
search algorithm which aims at finding, in a limited time, a high number
of leaves along with their common ancestors.

Keywords: Game Playing, Neural Networks, Reinforcement Learning,
Online Learning

1 Introduction

A general game player is an agent able to develop a strategy for different kinds
of games, based on only the rules of the game to be learned; differently from a
specialized player (a notable example of which can be found in [1]), properties
and particularities of the played games cannot be hardcoded into the player.
Most of the literature on general game playing focuses on the usage of the Game
Description Language (GDL) which is part of the General Game Playing (GGP)
project of Stanford University, and has become the standard for general game
playing during the last years. It is a logical language which describes the rules
of a game with a set of logical rules and facts, using specific constructs in order
to define properties such as initial states, player rewards, turn order, etc. This
approach however causes a double loss in generality: a general game player is
unable to learn games not describable by GDL (like games with hidden infor-
mation or randomic elements), and a direct access to all the rules of the game
is required. As a consequence, most of the usual general game players focus on
logically inferring features and strategies from the rules of the game (see, e.g.,
[2–5]) even when they do admit some sort of learning.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Research Information System University of Turin

https://core.ac.uk/display/302082154?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Leo Ghignone and Rossella Cancelliere

The goal of this work is to propose a system, named Neural Heuristic Based
player (NHB-player) that, in the framework of the classical two-players board
games, gradually learns a strategy; for this purpose a neural network is used
whose training set is collected through multiple simulated matches. Its main
advantage is the possibility of learning from experience, which can give better
results than rule analysis when the rules are complex or tricky, and allows the
development of a strategy even if the rules are not given according to a logic-
based description. The proposed general game player is immediately able to play
any game showing the following properties:

- zero-sum, i.e. gain for a player always means loss for the other(s)

- turn-based

- deterministic, that is no random elements are permitted

- all players have perfect information, (no information is hidden to any player)

- termination is guaranteed.

State-space searches are a powerful tool in artificial intelligence, used in or-
der to define a sequence of actions that can bring the system to a desired state.
Searching through all possible evolutions and actions is almost always imprac-
tical, so heuristic functions are used to direct the search. A heuristic function
is a function that, given a state, returns a value that is proportional to the
distance from that state to a desired goal. These functions usually have to be
implemented by human experts for each specific task, thus turning a general-
purpose algorithm such as a state space search into a specific one. For this reason,
state-of-the-art general game players [6] usually avoid heuristic functions, relying
instead on Monte-Carlo searches to find the values of different states.

The first contribution of our work is to explore the possibility that a feedfor-
ward neural network can be automatically trained to compute heuristic functions
for different game states rather than using Monte-Carlo methods for state eval-
uation.

The moves of our NHB-player in the space of all possible game states are cho-
sen using a minimax algorithm with alpha-beta pruning and iterative deepening:
this method is described in Section 2. The neural model is a single hidden layer
feedforward neural network (SLFN), described in Section 3. Over a few decades,
methods based on gradient descent have mainly been used for its training; among
them there is the large family of techniques based on backpropagation, widely
studied in its variations. The start-up of these techniques assigns random initial
values to the weights connecting input, hidden and output nodes, that are then
iteratively adjusted.

Some non iterative procedures have been proposed in literature as learning
algorithms for SLFNs based on random assignation of input weights and out-
put weights evaluation through pseudoinversion; some pioneering works on the
subject are [7] and [8]. Recently Huang et al. [9] proposed the Extreme Learn-
ing Machine (ELM) which has the property of reducing training to an analytic
one-step procedure while maintaining the universal approximation capabilities
of the neural network; we use for training our model an online formulation called
OS-ELM proposed by Liang et al. [10] and described in Section 3.1, which allows

Neural Learning of Heuristic Functions for General Game Playing 3

to divide the training examples into multiple sets incrementally presented to the
network. This choice comes from the fact that the search algorithm and the
neural heuristic assignment in our case are complementary to each other during
all the phases of player’s training, so that the training instances, each composed
by a state and the heuristic function value for that state, are subsequently col-
lected during different training matches and are not entirely available from the
beginning.

A crucial step for neural training is the selection of a sufficient number of
training examples. Since we aim at creating a system which autonomously learns
a heuristic function, we don’t want to turn to records of previously played games
or to external opponents to train against. We therefore propose an original
method for extracting the training examples directly from matches simulated
by the system itself through a procedure described in Section 4. Part of this
procedure is the Backward Iterative Deepening Search (Backward IDS), a new
search algorithm presented in Section 4.1, which aims at finding, in a limited
time, a high number of leaves along with their common ancestors.

Performance is evaluated on two classical board games of different complex-
ity: Connect Four and Reversi. Implementation details, experimentation descrip-
tion and results are reported in Section 5.

2 Search Algorithm

The state-space search algorithm classically used for this kind of games is the
minimax algorithm: it was originally developed for two-players zero-sum games,
but it can also be adapted to other kinds of games. The interested reader can
find a description of the minimax search and of other algorithms cited in this
Section (alpha-beta search, iterative deepening) in [11].

The idea behind this algorithm is that a player wants to minimize its op-
ponent’s maximum possible reward at the end of the game. In order to know
what is the best outcome reachable for the opponent at each state of the game,
the algorithm builds a tree of all the possible evolutions of the game starting
from the current state and then backtracks from the terminal states to the root.
Since it is usually impractical to expand the whole tree to the end of the game,
the search is stopped at a certain level of the tree and the heuristic function is
applied to the nodes of that level in order to estimate how favorable they are.
For games without a final score, reward values are set to −1 for a loss, 0 for a
tie and 1 for a win.

In our model we utilise an improvement over the minimax algorithm, i.e.
the so-called alpha-beta pruning : if at some points during the exploration of the
tree a move is proven to be worse than another, there is no need to continue
expanding the states which would be generated from it.

When using this pruning, the complexity of the search depends on the order
in which nodes are explored: in our implementation nodes are ordered by their
value of heuristic function, given by the neural network, thus resulting in searches
that are faster the better the network is trained.

4 Leo Ghignone and Rossella Cancelliere

One of the main factors influencing performance is the depth of the search.
The playing strength can be greatly improved increasing the depth at which
the search is stopped and the heuristic function is applied, but this objective is
reached at the cost of an exponentially increasing reasoning time.
With the aim of finding a good tradeoff between these two requirements we
applied an iterative deepening approach: this choice has also the advantage of
automatically adapting the depth during a game, increasing it when states with
few successors are encountered (for example when there are forced moves for
some player), and decreasing it when there are many moves available. Setting
a time limit instead of a depth limit is easier since the duration of the training
can be directly determined, and a finer tuning is allowed.

3 Neural Model and Pseudo-inversion Based Training

In this section we introduce notation and we recall basic ideas concerning the use
of pseudo-inversion for neural training. The core of the NHB-player learning is a
standard SLFN with P input neurons, M hidden neurons and Q output neurons,
non-linear activation functions φ(x) in the hidden layer and linear activation
functions in the output layer. In our model the input layer is composed by as
many nodes as are the variables in a state of the considered game, while the
hidden layer size is determined through a procedure of k-fold cross validation
described in the following section. All hidden neurons use the standard logistic
function φ(x) = 1

1+e−x as activation function. The output layer is composed by
a single node because only a single real value must be computed for each state.

From a general point of view, given a dataset of N distinct training samples
of (input, output) pairs (xj , tj), where xj ∈ RP and tj ∈ RQ, the learning
process for a SLFN aims at producing the matrix of desired outputs T ∈ RN×Q

when the matrix of all input instances X ∈ RN×P is presented as input.
As stated in the introduction, in the pseudoinverse approach input weights cij

(and hidden neurons biases) are randomly sampled from a uniform distribution
in a fixed interval and no longer modified. After having determined input weights
C, the use of linear output units allows to determine output weights wij as the
solution of the linear system HW = T, where H ∈ RN×M is the hidden layer
output matrix of the neural network, i.e. H = Φ(XC).

Since H is a rectangular matrix, the least square solution W∗ that minimises
the cost functional ED = ||HW −T||22 is W∗ = H+T (see e.g. [12, 13]).

H+ is the Moore-Penrose generalised inverse (or pseudoinverse) of matrix H.
Advantage of this training method is that the only parameter of the network

that needs to be tuned is the dimension of the hidden layer. Section 4.2 will
show the procedure utilized to do so.

3.1 Online Sequential Version of the Training Algorithm

The training algorithm we implemented to evaluate W∗ is the variation pro-
posed in [10], called Online Sequential Extreme Learning Machine (OS-ELM):

Neural Learning of Heuristic Functions for General Game Playing 5

its main advantage is the ability to incrementally learn from new examples with-
out keeping previously learned examples in memory. In addition to the matrices
C and W, containing the hidden and output layer weights, a network trained
with this algorithm also utilises an additional matrix P.

The starting values for the net’s matrices P0 and W0 are computed in the
OS-ELM algorithm with the following formulas:

P0 = (HT
0 H0)−1, W0 = P0H

T
0 T0 (1)

where H0 and T0 are respectively the hidden layer output matrix and the target
matrix relative to the initial set of training examples.

The update is done in two steps, according to the following equations:

Pk+1 = Pk −PkH
T
k+1(I + Hk+1PkH

T
k+1)−1Hk+1Pk (2)

Wk+1 = Wk + Pk+1H
T
k+1(Tk+1 −Hk+1Wk) (3)

The network weights W are thus updated basing on the hidden layer output
matrix for the new set of training examples Hk +1, the target matrix of the new
set of training examples Tk + 1, and the previous evaluated matrices Pk and
Wk. I is the identity matrix.

The network can be trained with sets of examples of varying and arbitrary
magnitude: it is however better to accumulate examples obtained from some
different matches, instead of allowing learning after every game, in order to
be able to discard duplicates, so reducing the risk of overfitting on the most
frequent states. This technique can anyway cause a considerable decrease of the
learning speed, since the matrix to be inverted in eq. (2) has a dimension equal
to the square of the number of training examples presented. In this case or if
the dimension of this matrix exceeds the available memory space it is sufficient
to split the training set in smaller chunks and iteratively train the network on
each chunk.

4 Training Examples Selection

As already mentioned, multiple training examples are required, each composed
by a state and the desired heuristic function value for that state. Since we aim
at creating a NHB-player which autonomously learns the heuristic function, we
do not want to rely on records of previously played games or on external oppo-
nents to train against. Therefore, examples are extracted directly from simulated
matches.

The optimal candidates for building training examples are the terminal states
of the game, whose value of heuristic function can be determined directly by the
match outcome: we assign to these states a value 1 for a win, −1 for a loss and 0
for a tie. Using the search tree, the values of terminal states can be propagated
unto previous states that lead to them; in this way we are able to build examples
using non-terminal states, which are the ones for which a heuristic function is
actually useful.

6 Leo Ghignone and Rossella Cancelliere

In addition, for each state of the played match a new example is generated:
the heuristic value of these examples is computed as increasing quadratically
during the match from 0 to the value of the final state. This way of assigning
scores is arbitrary and it is based on the assumption that the initial condition
is neutral for the two players and that the winning player’s situation improves
regularly during the course of the game. This assumption is useful because it
allows to collect a certain number of states with heuristic function values close
to 0, which can prevent the net from becoming biased towards answers with
high absolute value (for games in which drawing is a rare outcome). Even if
some games are not neutral in their initial state, they are nevertheless complex
enough to be practically neutral for any human (and as such imperfect) player;
moreover, the value of the initial state is never utilized in the search algorithm, so
its potentially incorrect estimation doesn’t affect the performance of the system.
Finally, duplicate states within a training set are removed, keeping only one
example for each state; if in this situation a value assigned for a played state
and a value coming from propagation of a terminal state are conflicting, the
second one is kept since it’s the most accurate one.

After enough training matches, the system can propagate heuristic values
from intermediate states, provided that these values are the result of previous
learning and are not completely random. This can be estimated using the concept
of consistency of a node, discussed in [14]: a node is considered consistent if its
value of heuristic function is equal1 to the value computed for that node by a
minimax search with depth 1. All consistent nodes can be used for propagation
in the same way as terminal nodes, maintaining the rule that, when conflicts
arise, values propagated from terminal nodes have the priority.

4.1 Backward Iterative Deepening Search

When in the complete tree2 of a game the majority of the leaves are positioned
flatly in one or a small number of levels far from the root, they are not reachable
with a low-depth search from most of the higher nodes. In games like Reversi,
for example, no terminal states are encountered during the search until the very
last moves, so the number of training examples extracted from every match is
quite small.

In order to find more terminal states in a game of this kind, a deeper search is
needed starting from a deep enough node. Good candidates for this search are the
states occurred near the end of a match, but it is difficult to determine how near
they must be in order to find as many examples as possible in a reasonable time.
The solution is once again to set a time limit instead of a depth limit and utilize
an iterative deepening approach: in this case we talk about a Backward Iterative

1 In the case of the proposed system, since the output is real-valued, the equality
constraint must be softened and all values within a margin ε are accepted.

2 The complete tree of a game is the tree having as root the initial state and as children
of a node all the states reachable with a single legal move from that node. The leaves
of this tree are the terminal states of the game.

Neural Learning of Heuristic Functions for General Game Playing 7

Deepening Search (or Backward IDS). The increase in depth at each step is
accompanied by a raising of the root of the search, resulting in sub-searches all
expanding to the same level but starting from nodes increasingly closer to the
root (see Figure 1). Differently from the standard iterative deepening search, in
the Backward IDS each iteration searches a sub-tree of the following iteration,
so the value of the previous sub-search can be passed to the following in order
to avoid recomputing; this iterative search has then the same complexity as the
last fixed-depth sub-search done, while automatically adapting itself to different
tree configurations.

Fig. 1. An example of application of the Backward IDS. The played game is the se-
quence of states 1-2-3-4-5. The search starts from state 4 with depth one, then goes
back to state 3 with depth two and so on until timeout. Nodes with the same shape
are explored during the same iteration.

4.2 Training Procedure

Each training procedure starts with a certain number of games played between
agents which both use random value heuristics. The states explored during these
games by both players are collected, multiple copies of the same state are elimi-
nated, and the resulting set is used as initial training set for the neural network.

Since the more trained a network is the better training examples will it
generate, further training has to be performed by alternating phases of game
simulation (where training examples are extracted and accumulated through
simulating games played by the trained system) and phases of neural network
training (where the system improves basing on the training examples extracted
during the previous phase).

So doing the extraction of post-initial training examples is performed in the
framework of games played against a similar opponent which applies the same
search strategy but whose heuristic function comes from a randomly initialized
neural network. Most games will (hopefully) be won by the trained player, but
the system will still improve itself through the exploration of new states.

It can also be useful to have the system play against itself, but for no more
than one match in each training cycle. The deterministic structure of the search
algorithm implies in fact that, unless the heuristic function is modified, multiple
matches against the same opponent will be played exactly in the same way.

8 Leo Ghignone and Rossella Cancelliere

Aiming at finding the optimal number of hidden neurons that allows to avoid
overfitting, we determine hidden layer size and hidden layer weights through a
10-fold cross validation: hidden layers of increasing sizes are explored until for
10 iterations in a row the best average validation error doesn’t decrease. During
each iteration three different random initialization for the hidden weights are
tried, and only the best one is kept.

5 Implementation Details, Game Descriptions and
Results

The system structure described in the previous sections is completely indepen-
dent from the game to be played. A modular structure is adopted to maintain
this independence: four game-dependent functions, separated from the rest of the
system, completely describe each game and contain all its rules so that different
implementations of these functions permit to play different games.

init state: This function returns the initial state of the game, taking as argu-
ment the starting player (1 or -1 for the two-player games implemented).

expand: This function returns a list of all the moves available from a given state
received as input, along with the list of states they lead to.

test terminal: This function takes as input a state and checks if it is a terminal
one, returning in this case also the final outcome.

apply: This function gets as input a state and a move, then applies the chosen
move to the state and returns the new state reached.

We implemented two different games to test the learning capabilities of our
artificial player: Connect Four and Reversi. These games have different degrees
of complexity and, while they both possess the properties described in the Intro-
duction, they have some peculiarities that make them apt to test different aspects
of the system. We will now briefly present their characteristics and discuss the
obtained results.

5.1 Connect Four

This game is played on a grid with 6 rows and 7 columns, where players alterna-
tively place their tokens. A token can only be placed on the lowest unoccupied
slot of each column3, and the first player which puts four of its tokens next to
each other horizontally, vertically, or diagonally is the winner.

Allis ([15]) demonstrated that the first player always wins, under the condi-
tion of perfect playing on both sides; this level of playing, almost impossible for
a human, is difficult even for a machine, since artificial perfect players usually re-
quire a database of positions built with exhaustive search in order to successfully
choose the best move.

3 The most common commercial versions of this game are played on a suspended grid,
where tokens fall until the lowest free position.

Neural Learning of Heuristic Functions for General Game Playing 9

The branching factor4 for this game is constant and equal to 7, until a col-
umn is filled. This makes the search depth almost constant, thus reducing the
advantage of an iterative deepening search.

We evaluate the performance of our model looking at the percentage of
matches won against an untrained opponent. We also explored the influence
of the time limit for each move, varying the move time available during training:
three different networks were trained, with move times of 0.25 seconds (s), 0.5 s
and 1 s respectively. Aiming at comparing networks trained for the same total
amount of time, the number of training matches was proportionally halved.

Table 1. Varying move time in Connect Four training. T=Training matches. L,D,W=
Losses, Draws, Wins over 200 testing matches

move time=0.25s
96 hidden neurons

T L D W

20 79 11 110
40 53 9 138
60 46 13 141
80 68 18 114
100 46 12 142
120 42 10 148
140 66 11 123
160 59 9 132
180 60 14 126
200 47 13 140

move time=0.5s
112 hidden neurons

T L D W

10 54 14 132
20 68 12 120
30 88 13 99
40 44 12 144
50 43 9 148
60 69 13 118
70 50 8 142
80 54 13 133
90 58 7 135
100 55 11 134

move time=1s
113 hidden neurons

T L D W

5 59 18 123
10 64 13 123
15 57 13 130
20 69 16 115
25 61 19 120
30 47 18 135
35 84 18 98
40 77 12 111
45 62 14 124
50 61 10 129

As shown in Table 1, the best performance is obtained with a move time
equal to 0.25 s. and 120 training matches. The number of won matches clearly
demonstrates the effectiveness of our proposed approach in developing a success-
full playing stategy.

Looking at the results obtained with move time = 0.5 s. we see that a com-
parable performance is reached with about half the number of training matches,
i.e. 50; it is interesting to note that in this way the total training time remains
almost unchanged. Besides, also the network trained with move time equal to
1 s. reaches the best performance in approximately half the number of training
games with respect to the case of move time = 0.5 s., but now it appears to be
slightly worse: this indicates the possible existence of an optimal move time that
can produce the best trained network in a fixed total training time. Developing
a way to find this optimal time will be an objective for future work.

4 The branching factor is the average number of branches (successors) from a (typical)
node in a tree. It indicates the bushiness and hence the complexity of a tree. If a
tree branching factor is B, then at depth d there will be approximately Bd nodes.

10 Leo Ghignone and Rossella Cancelliere

5.2 Reversi

Reversi, also known as Othello because of its most popular commercial variant,
is a more complex game played on a 8 by 8 board where two players alternate
placing disks whose two faces have different colours, one for each player. When
the board is full or no player has a legal move to play, disks are counted and
whoever owns the highest number of them wins the match. A more detailed
description of this game can be found in [16].

This game is characterised by high average branching factor and game length
(for almost all matches 60 moves, except for the rare cases where no player has
a legal move); finding available moves and checking for terminal states is very
expensive from a computational point of view, resulting in a high time required
to complete a search.

While since 1980 programs exist that can defeat even the best human players
(see [17] for a review of the history of Othello computer players), the game has
not yet been completely solved: performance of the top machine players indicates
that perfect play by both sides probably leads to a draw, but this conjecture
has not yet been proved. The branching factor varies during the game, usually
reaching the highest value (about 15) during the middle phase.

99 -8 8 6 6 8 -8 99

-8 -24 -4 -3 -3 -4 -24 -8

8 -4 7 4 4 7 -4 8

6 -3 4 0 0 4 -3 6

6 -3 4 0 0 4 -3 6

8 -4 7 4 4 7 -4 8

-8 -24 -4 -3 -3 -4 -24 -8

99 -8 8 6 6 8 -8 99

Fig. 2. The positional evaluation table used for state evaluation in old Microsoft Win-
dows Reversi programs.

For the game of Reversi many heuristic functions for artificial players have
been defined in the past (e.g. in [18]). In order to compare our proposed model
with some baseline performance, we chose two human-defined heuristics, the
piece-advantage and the positional ones: the first one is extremely simple while
the second one is actually used in artificial playing.

Piece-advantage: this heuristic simply assigns state values equal to the dif-
ference between the number of owned disks and the number of opponent’s
disks.

Positional: this heuristic assigns to each disk a value which depends on its po-
sition; the values of all disks owned by each player are then summed and the
difference between the two players’ scores is returned. For our implementa-
tion we chose the same evaluation table used by some Microsoft Windows
Reversi programs (as noted in [19]), shown in Figure 2.

Neural Learning of Heuristic Functions for General Game Playing 11

Table 2 compares performance obtained by the NHB-player and by two players
which choose their moves basing on the heuristics described above.

Table 2. Performance comparison among NHB, Piece-advantage and Positional heuris-
tics over 100 matches against opponents who play using random heuristics.

Heuristic Training Matches Losses Draws Wins

50 36 5 59
100 24 4 72
150 39 2 59
200 36 0 64

NHB 250 30 6 64
(131 hidden neurons) 300 41 4 55

350 38 5 57
400 42 2 56
550 39 2 59
600 36 3 61

Piece-advantage - 53 3 44

Positional - 26 2 72

We can see that the Piece-advantage heuristic performes even worse than the
random one, losing more than half of the matches. This result emphasizes that
the development of a heuristic function is not a simple task: the Piece-advantage
heuristic, that may seem good in theory because it tries to maximise the score
at each stage, turns out to be harmful in practice.

Because of the higher number of matches lost, the Positional heuristic per-
formes slightly worse with respect to the NHB-player one: we stress the fact that
this happens although it is a game-dependent human-defined heuristic.

6 Conclusions

Results discussed in the previous section show that our main objective has been
achieved: for each implemented game the NHB-player is able to develop a success-
ful playing strategy, without the necessity of tailor-made human contributions
but only thanks to the knowledge of game rules.

The strength of the system lies in its adaptability, which allows to deal with
both other games with the discussed properties and games characterized by
different features.

Future work will focus on one hand in enabling the exploitation of additional
information that may be given to the player (for example a score given turn-by-
turn, as is the case in [20]), on the other hand in expanding our model to make
it able to learn other interesting set of games, some of which are:

chance-based games, that can be managed by simply modifying the minimax
search algorithm

12 Leo Ghignone and Rossella Cancelliere

games with repeated states, that are hard to control since they can transform
into never-ending ones. In this case a modification of the search algorithm in the
training phase is necessary to avoid infinite loops.

References

1. Silver, D., Huang, A., et al.: Mastering the game of Go with deep neural networks
and tree search. In: Nature 529, no. 7587, pp. 484–489. (2016)

2. Draper, S., Rose, A.: Sancho ggp player, http://sanchoggp.blogspot.com
3. Michulke, D.: Neural networks for high-resolution state evaluation in general game

playing. In: IJCAI-11 Workshop on General Game Playing (GIGA11), pp. 31–37.
(2011)

4. Schiffel, S., Thielscher, M.: Fluxplayer: A successful general game player. In: 22nd
National Conference on Artificial intelligence, pp. 1191–1196. AAAI Press, Menlo
Park(2007)

5. Swiechowski, M., Mandziuk, J.: Specialized vs. multi-game approaches to AI in
games. In: Intelligent Systems 2014, pp. 243–254. (2015)

6. Swiechowski, M., Park, H., Mandziuk, J., Kim, K.: Recent Advances in General-
Game Playing. In: The Scientific World Journal (2015)

7. Schmidt, W.F., Kraaijveld, M., Duin, R.P.W., et al.: Feedforward Neural Networks
with Random Weights. In: International Conference on Pattern Recognition, Con-
ference B: Pattern Recognition Methodology and Systems, pp. 1–4. (1992)

8. Pao, Y.H., Park, G.H., Sobajic D.J.: Learning and Generalization Characteristics
of the Random Vector Functional-link Net. Neurocomputing, 6, 163–180 (1994)

9. Huang, G.B., Chen, L., Siew, C.K.: Universal approximation using incremental con-
structive feedforward networks with random hidden nodes. IEEE Transactions on
Neural Networks, 17, 879–892 (2006)

10. Liang, N.Y., Huang, G.B., Saratchandran, P., Sundararajan, N.: A fast and accu-
rate online sequential learning algorithm for feedforward networks. IEEE Transac-
tions on Neural Networks, 17, 1411–1423 (2006)

11. Russell, S., Norvig, P.: Artificial Intelligence: a Modern Approach. Prentice-Hall,
Egnlewood Cliffs (1995)

12. Penrose, R.: On best approximate solutions of linear matrix equations. Mathemat-
ical Proceedings of the Cambridge Philosophical Society, 52, pp. 17–19. (1956)

13. Bishop, C.: Pattern Recognition and Machine Learning. Springer (2006)
14. Gherrity, M.: A game-learning machine. PhD Thesis, University of California, San

Diego (1993)
15. Allis, L.W.: A knowledge-based approach of connect-four. Technical report, Vrije

Universiteit, Subfaculteit Wiskunde en Informatica (1988)
16. British Othello Federation: Game Rules, http://www.britishothello.org.uk/

rules.html

17. Cirasella, J., Kopec, D.: The History of Computer Games. CUNY Academic Works,
New York (2006)

18. Mitchell, D.H.: Using features to evaluate positions in experts’ and novices’ Othello
games. Masters Thesis, Northwestern University, Evanston (1984)

19. MacGuire, S.: Strategy Guide for Reversi & Reversed Reversi, www.samsoft.org.
uk/reversi/strategy.htm#position

20. Mnih, V., Kavukcuoglu, K., Silver, D., et al.: Human-level control through deep
reinforcement learning. Nature 518, no. 7540, pp. 529–533. (2015)

