125 research outputs found

    Efficient Generation of Two-Photon Excited Phosphorescence from Molecules in Plasmonic Nanocavities.

    Get PDF
    Nonlinear molecular interactions with optical fields produce intriguing optical phenomena and applications ranging from color generation to biomedical imaging and sensing. The nonlinear cross-section of dielectric materials is low and therefore for effective utilisation, the optical fields need to be amplified. Here, we demonstrate that two-photon absorption can be enhanced by 108 inside individual plasmonic nanocavities containing emitters sandwiched between a gold nanoparticle and a gold film. This enhancement results from the high field strengths confined in the nanogap, thus enhancing nonlinear interactions with the emitters. We further investigate the parameters that determine the enhancement including the cavity spectral position and excitation wavelength. Moreover, the Purcell effect drastically reduces the emission lifetime from 520 ns to <200 ps, turning inefficient phosphorescent emitters into an ultrafast light source. Our results provide an understanding of enhanced two-photon-excited emission, allowing for optimization of efficient nonlinear light-matter interactions at the nanoscale

    Stabilizing the Oxygen Lattice and Reversible Oxygen Redox Chemistry through Structural Dimensionality in Lithium-Rich Cathode Oxides.

    Get PDF
    Lattice-oxygen redox (l-OR) has become an essential companion to the traditional transition-metal (TM) redox charge compensation to achieve high capacity in Li-rich cathode oxides. However, the understanding of l-OR chemistry remains elusive, and a critical question is the structural effect on the stability of l-OR reactions. Herein, the coupling between l-OR and structure dimensionality is studied. We reveal that the evolution of the oxygen-lattice structure upon l-OR in Li-rich TM oxides which have a three-dimensional (3D)-disordered cation framework is relatively stable, which is in direct contrast to the clearly distorted oxygen-lattice framework in Li-rich oxides which have a two-dimensional (2D)/3D-ordered cation structure. Our results highlight the role of structure dimensionality in stabilizing the oxygen lattice in reversible l-OR, which broadens the horizon for designing high-energy-density Li-rich cathode oxides with stable l-OR chemistry

    Tracking interfacial single-molecule pH and binding dynamics via vibrational spectroscopy.

    Get PDF
    Understanding single-molecule chemical dynamics of surface ligands is of critical importance to reveal their individual pathways and, hence, roles in catalysis, which ensemble measurements cannot see. Here, we use a cascaded nano-optics approach that provides sufficient enhancement to enable direct tracking of chemical trajectories of single surface-bound molecules via vibrational spectroscopy. Atomic protrusions are laser-induced within plasmonic nanojunctions to concentrate light to atomic length scales, optically isolating individual molecules. By stabilizing these atomic sites, we unveil single-molecule deprotonation and binding dynamics under ambient conditions. High-speed field-enhanced spectroscopy allows us to monitor chemical switching of a single carboxylic group between three discrete states. Combining this with theoretical calculation identifies reversible proton transfer dynamics (yielding effective single-molecule pH) and switching between molecule-metal coordination states, where the exact chemical pathway depends on the intitial protonation state. These findings open new domains to explore interfacial single-molecule mechanisms and optical manipulation of their reaction pathways

    Controlling Optically Driven Atomic Migration Using Crystal-Facet Control in Plasmonic Nanocavities.

    Get PDF
    Plasmonic nanoconstructs are widely exploited to confine light for applications ranging from quantum emitters to medical imaging and biosensing. However, accessing extreme near-field confinement using the surfaces of metallic nanoparticles often induces permanent structural changes from light, even at low intensities. Here, we report a robust and simple technique to exploit crystal facets and their atomic boundaries to prevent the hopping of atoms along and between facet planes. Avoiding X-ray or electron microscopy techniques that perturb these atomic restructurings, we use elastic and inelastic light scattering to resolve the influence of crystal habit. A clear increase in stability is found for {100} facets with steep inter-facet angles, compared to multiple atomic steps and shallow facet curvature on spherical nanoparticles. Avoiding atomic hopping allows Raman scattering on molecules with low Raman cross-section while circumventing effects of charging and adatom binding, even over long measurement times. These nanoconstructs allow the optical probing of dynamic reconstruction in nanoscale surface science, photocatalysis, and molecular electronics.ER

    Application of percutaneous transluminal sharp recanalization in transjugular intrahepatic portosystemic shunt for patients with chronic portal vein occlusion

    Get PDF
    PURPOSEWe aimed to evaluate the feasibility and safety of a modified technique for portal vein recanalization, percutaneous transluminal sharp recanalization (PTSR), when performing transjugular intrahepatic portosystemic shunt (TIPS) for the treatment of chronic portal vein occlusion (CPVO) and portal hypertension.METHODSNine consecutive patients with CPVO and portal hypertension had undergone TIPS and PTSR procedure after failing in conventional percutaneous catheterization from March 2017 to July 2019. Technical success rates, effectiveness, and complications were evaluated. Follow-up of patients’ clinical outcomes and shunt patency were performed periodically. Primary and secondary shunt patency were analyzed by Kaplan-Meier method.RESULTSThe occluded portal veins were successfully recanalized after failing in conventional percutaneous catheterization, and TIPS procedures were completed in all 9 patients. Two patients suffered from procedure-related complications. A portosystemic pressure gradient <12 mmHg, or a percent reduction of 25% to 50% of baseline, was achieved in all 9 patients after TIPS. During the median follow-up period of 28 months (range, 9–36 months), 1 patient experienced recurrent ascites and the other 8 patients remained asymptomatic. The cumulative rates of primary and secondary shunt patency were 66.67% and 100%, respectively, at 2 years.CONCLUSIONAs a supplementary method, PTSR is a feasible and safe method for portal vein recanalization when performing TIPS for patients with CPVO and portal hypertension

    Tracking interfacial single-molecule pH and binding dynamics via vibrational spectroscopy

    Get PDF
    Understanding single-molecule chemical dynamics of surface ligands is of critical importance to reveal their individual pathways and, hence, roles in catalysis, which ensemble measurements cannot see. Here, we use a cascaded nano-optics approach that provides sufficient enhancement to enable direct tracking of chemical trajectories of single surface-bound molecules via vibrational spectroscopy. Atomic protrusions are laser-induced within plasmonic nanojunctions to concentrate light to atomic length scales, optically isolating individual molecules. By stabilizing these atomic sites, we unveil single-molecule deprotonation and binding dynamics under ambient conditions. High-speed field-enhanced spectroscopy allows us to monitor chemical switching of a single carboxylic group between three discrete states. Combining this with theoretical calculation identifies reversible proton transfer dynamics (yielding effective single-molecule pH) and switching between molecule-metal coordination states, where the exact chemical pathway depends on the intitial protonation state. These findings open new domains to explore interfacial single-molecule mechanisms and optical manipulation of their reaction pathways

    Heteroatom-Induced Molecular Asymmetry Tunes Quantum Interference in Charge Transport through Single-Molecule Junctions

    Get PDF
    We studied the interplay between quantum interference (QI) and molecular asymmetry in charge transport through a single molecule. Eight compounds with five-membered core rings were synthesized, and their single-molecule conductances were characterized using the mechanically controllable break junction technique. It is found that the symmetric molecules are more conductive than their asymmetric isomers and that there is no statistically significant dependence on the aromaticity of the core. In contrast, we find experimental evidence of destructive QI in five-membered rings, which can be tuned by implanting different heteroatoms into the core ring. Our findings are rationalized by the presence of antiresonance features in the transmission curves calculated using nonequilibrium Green’s functions. This novel mechanism for modulating QI effects in charge transport via tuning of molecular asymmetry will lead to promising applications in the design of single-molecule devices
    • …
    corecore