131 research outputs found

    Coreset selection can accelerate quantum machine learning models with provable generalization

    Full text link
    Quantum neural networks (QNNs) and quantum kernels stand as prominent figures in the realm of quantum machine learning, poised to leverage the nascent capabilities of near-term quantum computers to surmount classical machine learning challenges. Nonetheless, the training efficiency challenge poses a limitation on both QNNs and quantum kernels, curbing their efficacy when applied to extensive datasets. To confront this concern, we present a unified approach: coreset selection, aimed at expediting the training of QNNs and quantum kernels by distilling a judicious subset from the original training dataset. Furthermore, we analyze the generalization error bounds of QNNs and quantum kernels when trained on such coresets, unveiling the comparable performance with those training on the complete original dataset. Through systematic numerical simulations, we illuminate the potential of coreset selection in expediting tasks encompassing synthetic data classification, identification of quantum correlations, and quantum compiling. Our work offers a useful way to improve diverse quantum machine learning models with a theoretical guarantee while reducing the training cost.Comment: 25 pages, 7 figure

    ELUCID IV: Galaxy Quenching and its Relation to Halo Mass, Environment, and Assembly Bias

    Full text link
    We examine the quenched fraction of central and satellite galaxies as a function of galaxy stellar mass, halo mass, and the matter density of their large scale environment. Matter densities are inferred from our ELUCID simulation, a constrained simulation of local Universe sampled by SDSS, while halo masses and central/satellite classification are taken from the galaxy group catalog of Yang et al. The quenched fraction for the total population increases systematically with the three quantities. We find that the `environmental quenching efficiency', which quantifies the quenched fraction as function of halo mass, is independent of stellar mass. And this independence is the origin of the stellar mass-independence of density-based quenching efficiency, found in previous studies. Considering centrals and satellites separately, we find that the two populations follow similar correlations of quenching efficiency with halo mass and stellar mass, suggesting that they have experienced similar quenching processes in their host halo. We demonstrate that satellite quenching alone cannot account for the environmental quenching efficiency of the total galaxy population and the difference between the two populations found previously mainly arises from the fact that centrals and satellites of the same stellar mass reside, on average, in halos of different mass. After removing these halo-mass and stellar-mass effects, there remains a weak, but significant, residual dependence on environmental density, which is eliminated when halo assembly bias is taken into account. Our results therefore indicate that halo mass is the prime environmental parameter that regulates the quenching of both centrals and satellites.Comment: 21 pages, 16 figures, submitted to Ap

    ELUCID. VII. Using constrained hydro simulations to explore the gas component of the cosmic web

    Full text link
    Using reconstructed initial conditions in the Sloan Digital Sky Survey (SDSS) survey volume, we carry out constrained hydrodynamic simulations in three regions representing different types of the cosmic web: the Coma cluster of galaxies; the SDSS Great Wall; and a large low-density region at z ∼ 0.05. These simulations, which include star formation and stellar feedback but no active galactic nucleus formation and feedback, are used to investigate the properties and evolution of intergalactic and intracluster media. About half of the warm-hot intergalactic gas is associated with filaments in the local cosmic web. Gas in the outskirts of massive filaments and halos can be heated significantly by accretion shocks generated by mergers of filaments and halos, respectively, and there is a tight correlation between the gas temperature and the strength of the local tidal field. The simulations also predict some discontinuities associated with shock fronts and contact edges, which can be tested using observations of the thermal Sunyaev-Zel’dovich effect and X-rays. A large fraction of the sky is covered by Lyα and O vi absorption systems, and most of the O vi systems and low-column-density H i systems are associated with filaments in the cosmic web. The constrained simulations, which follow the formation and heating history of the observed cosmic web, provide an important avenue to interpret observational data. With full information about the origin and location of the cosmic gas to be observed, such simulations can also be used to develop observational strategie

    Design, synthesis and antimycobacterial activity of novel nitrobenzamide derivatives

    Get PDF
    We report herein the design and synthesis of a series of novel nitrobenzamide derivatives. Results reveal that many of them display considerable in vitro antitubercular activity. Four N-benzyl or N-(pyridine-2-yl)methyl 3,5-dinitrobenzamides A6, A11, C1 and C4 have not only the same excellent MIC values of 1500), opening a new direction for further development

    Design, synthesis and in vitro anti-Zika virus evaluation of novel Sinefungin derivatives

    Get PDF
    We report herein the design and synthesis of a series of novel Sinefungin (SIN) derivatives, based on the structures of SIN and its analogue EPZ004777. Our results reveal that target compounds 1ad-af, 1ba-bb and 1bf-bh show better activity (IC50 = 4.56–20.16 μM) than EPZ004777 (IC50 = 35.19 μM). Surprisingly, SIN was founded to be not as active (IC50 > 50 μM) as we and other research groups predicted. Interestingly, the intermediates 9a-b and 11b display potent anti-ZIKV potency (IC50 = 6.33–29.98 μM), and compound 9a also exhibits acceptable cytotoxicity (CC50 > 200 μM), suggesting their promising potential to be leads for further development

    Employing machine learning using ferroptosis-related genes to construct a prognosis model for patients with osteosarcoma

    Get PDF
    Identifying effective biomarkers in osteosarcoma (OS) is important for predicting prognosis. We investigated the prognostic value of ferroptosis-related genes (FRGs) in OS. Transcriptome and clinical data were obtained from The Cancer Genome Atlas and Gene Expression Omnibus. FRGs were obtained from the ferroptosis database. Univariate COX regression and LASSO regression screening were performed and an FRG-based prognostic model was constructed, which was validated using the Gene Expression Omnibus cohort. The predictive power of the model was assessed via a subgroup analysis. A nomogram was constructed using clinical markers with independent prognostic significance and risk score results. The CIBERSORT algorithm was used to detect the correlation between prognostic genes and 22 tumor-infiltrating lymphocytes. The expression of prognostic genes in erastin-treated OS cell lines was verified via real-time PCR. Six prognostic FRGs (ACSL5, ATF4, CBS, CDO1, SCD, and SLC3A2) were obtained and used to construct the risk prognosis model. Subjects were divided into high- and low-risk groups. Prognosis was worse in the high-risk group, and the model had satisfactory prediction performance for patients younger than 18 years, males, females, and those with non-metastatic disease. Univariate COX regression analysis showed that metastasis and risk score were independent risk factors for patients with OS. Nomogram was built on independent prognostic factors with superior predictive power and patient benefit. There was a significant correlation between prognostic genes and tumor immunity. Six prognostic genes were differentially expressed in ferroptosis inducer-treated OS cell lines. The identified prognostic genes can regulate tumor growth and progression by affecting the tumor microenvironment

    Tumor Tissue Detection using Blood-Oxygen-Level-Dependent Functional MRI based on Independent Component Analysis

    Get PDF
    Accurate delineation of gliomas from the surrounding normal brain areas helps maximize tumor resection and improves outcome. Blood-oxygen-level-dependent (BOLD) functional MRI (fMRI) has been routinely adopted for presurgical mapping of the surrounding functional areas. For completely utilizing such imaging data, here we show the feasibility of using presurgical fMRI for tumor delineation. In particular, we introduce a novel method dedicated to tumor detection based on independent component analysis (ICA) of resting-state fMRI (rs-fMRI) with automatic tumor component identification. Multi-center rs-fMRI data of 32 glioma patients from three centers, plus the additional proof-of-concept data of 28 patients from the fourth center with non-brain musculoskeletal tumors, are fed into individual ICA with different total number of components (TNCs). The best-fitted tumor-related components derived from the optimized TNCs setting are automatically determined based on a new template-matching algorithm. The success rates are 100%, 100% and 93.75% for glioma tissue detection for the three centers, respectively, and 85.19% for musculoskeletal tumor detection. We propose that the high success rate could come from the previously overlooked ability of BOLD rs-fMRI in characterizing the abnormal vascularization, vasomotion and perfusion caused by tumors. Our findings suggest an additional usage of the rs-fMRI for comprehensive presurgical assessment

    Egg consumption associated with all-cause mortality in rural China: A 14-year follow-up study

    Get PDF
    Background: Dietary recommendations regarding egg intake remain controversial topic for public health. We hypothesized that there was a positive association between egg consumption and all-cause mortality. Methods: To test this hypothesis, we enrolled 9885 adults from a community-based cohort in Anhui Province, China during 2003-05. Egg consumption was assessed by food questionnaire. Stratified analyses were performed for age, sex, body mass index (BMI), blood pressure, smoking, drinking and laboratory tests. Results: After an average follow-up of 14.1 years, 9444 participants were included for analysis. A total of 814 deaths were recorded. Participants\u27 BMI and lipid profile had no significantly difference between three egg consumption groups. BMI was 21.6±2.7 of the whole population, especially BMI\u3e24 was only 17.3%. A bivariate association of egg consumption \u3e6/week with increased all-cause mortality was observed compared with ≤6/week (RR: 1.35, 95% CI: 1.05, 1.73, P = 0.018). A significant interaction was observed for BMI ≥ 21.2 kg/m2 vs. BMI\u3c21.2 kg/m2 (P for interaction: 0.001). No other significant interactions were found. Conclusions: In this study, consuming \u3e6 eggs/week increased risk of all-cause mortality, even among lean participants, especially who with BMI ≥ 21.2 kg/m2. Eggs are an easily accessible and constitute an affordable food source in underdeveloped regions. Consuming \u3c6 eggs/week may be the most suitable intake mode

    Definitive characterization of CA 19-9 in resectable pancreatic cancer using a reference set of serum and plasma specimens

    Get PDF
    The validation of candidate biomarkers often is hampered by the lack of a reliable means of assessing and comparing performance. We present here a reference set of serum and plasma samples to facilitate the validation of biomarkers for resectable pancreatic cancer. The reference set includes a large cohort of stage I-II pancreatic cancer patients, recruited from 5 different institutions, and relevant control groups. We characterized the performance of the current best serological biomarker for pancreatic cancer, CA 19-9, using plasma samples from the reference set to provide a benchmark for future biomarker studies and to further our knowledge of CA 19-9 in early-stage pancreatic cancer and the control groups. CA 19-9 distinguished pancreatic cancers from the healthy and chronic pancreatitis groups with an average sensitivity and specificity of 70-74%, similar to previous studies using all stages of pancreatic cancer. Chronic pancreatitis patients did not show CA 19-9 elevations, but patients with benign biliary obstruction had elevations nearly as high as the cancer patients. We gained additional information about the biomarker by comparing two distinct assays. The two CA 9-9 assays agreed well in overall performance but diverged in measurements of individual samples, potentially due to subtle differences in antibody specificity as revealed by glycan array analysis. Thus, the reference set promises be a valuable resource for biomarker validation and comparison, and the CA 19-9 data presented here will be useful for benchmarking and for exploring relationships to CA 19-9
    • …
    corecore