266 research outputs found

    Quantified movement test of core muscles for Athletes

    Get PDF
    The purpose of this study was to compare the different of the core muscles ability between normal subjects and athletes of an assessment consisted of seven movement tests. Nineteen participants were voluntarily recruited in this study and divided into normal subjects (N=9, age=20.2+-0.7 y/o, weight:63.7+-11.7 kg, height:170.9+-6.7 cm) and collegiate athletes (N=10, age=19.9+-1.0 y/o, weight; 72.4+-7.8 kg, height; 172.5+-4.5 cm). The result shows that the path length of plank, bird dog with right-hand raise, bird dog with left-hand raise, right side plank, right bridge, left bridge and area of right bridge, left bridge has significant differences between two groups (Table 1). Athletes exhibit shorter path length and smaller path area in all of these data

    Binding of Features and Responses in Inhibition of Return: The Effects of Task Demand

    Get PDF
    Binding of target’s location and response has been demonstrated in inhibition of return (IOR). This study further investigated the effects of task demand on the binding of the target’s form to the target’s location and response in the target-target paradigm of IOR. Experiments 1 (detection task) and 2 (localization task), in which the target’s form was task irrelevant, suggested the binding of location and response. Experiment  3 (discrimination task), in which the target’s form was task relevant, showed the binding of target’s form, location, and response. These findings support the concept that the features and responses associated with a target are integrated into episodic representations or event files for the target event. Furthermore, task demand modulates the binding or retrieval of the event files

    Arecoline induces HA22T/VGH hepatoma cells to undergo anoikis - involvement of STAT3 and RhoA activation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Our previous study showed that, in basal cell carcinoma cells, arecoline reduces levels of the tumor cell survival factor interleukin-6 (IL-6), increases levels of tumor suppressor factor p53, and elicits cell cycle arrest, followed by apoptosis. In preliminarily studies, we observed that arecoline induces detachment of the human-derived hepatoma cell line HA22T/VGH from the extracellular matrix. In the present study, we explored the fate of the detached HA22T/VGH cells and investigated the underlying mechanism.</p> <p>Methods</p> <p>HA22T/VGH cells or primary cultured rat hepatocytes were treated with arecoline, then changes in morphology, viability, apoptosis, and the expression of surface β1-integrin, apoptosis-related proteins, and IL-6 were examined. Furthermore, activation of the signal transducer and activator of transcription 3 (STAT3) pathway and the RhoA/Rock signaling pathway, including p190RhoGAP and Src homology-2 domain-containing phosphatase SHP2, was examined.</p> <p>Results</p> <p>A low concentration of arecoline (≤ 100 μg/ml) caused cytoskeletal changes in HA22T/VGH cells, but not hepatocytes, and this was accompanied by decreased β1-integrin expression and followed by apoptosis, indicating that HA22T/VGH cells undergo anoikis after arecoline treatment. IL-6 expression and phosphorylation of STAT3, which provides protection against anoikis, were inhibited and levels of downstream signaling proteins, including Bcl-X<sub>L </sub>and Bcl-2, were decreased, while Bax expression, mitochondrial cytochrome c release, and caspase-3 activity were increased. In addition, phosphorylation/activation of p190RhoGAP, a RhoA inhibitor, and of its upstream regulator, SHP2, was inhibited by arecoline treatment, while Rho/Rock activation was increased. Addition of the RhoA inhibitor attenuated the effects of arecoline.</p> <p>Conclusions</p> <p>This study demonstrated that arecoline induces anoikis of HA22T/VGH cells involving inhibition of STAT3 and increased RhoA/Rock activation and that the STAT3 and RhoA/Rock signaling pathways are connected.</p

    Dual Targeted Extracellular Vesicles Regulate Oncogenic Genes in Advanced Pancreatic Cancer

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) tumours carry multiple gene mutations and respond poorly to treatments. There is currently an unmet need for drug carriers that can deliver multiple gene cargoes to target high solid tumour burden like PDAC. Here, we report a dual targeted extracellular vesicle (dtEV) carrying high loads of therapeutic RNA that effectively suppresses large PDAC tumours in mice. The EV surface contains a CD64 protein that has a tissue targeting peptide and a humanized monoclonal antibody. Cells sequentially transfected with plasmid DNAs encoding for the RNA and protein of interest by Transwell®-based asymmetric cell electroporation release abundant targeted EVs with high RNA loading. Together with a low dose chemotherapy drug, Gemcitabine, dtEVs suppress large orthotopic PANC-1 and patient derived xenograft tumours and metastasis in mice and extended animal survival. Our work presents a clinically accessible and scalable way to produce abundant EVs for delivering multiple gene cargoes to large solid tumours

    Preparation of a Porous Composite Film for the Fabrication of a Hydrogen Peroxide Sensor

    Get PDF
    A series of dopant-type polyaniline-polyacrylic acid composite (PAn-PAA) films with porous structures were prepared and developed for an enzyme-free hydrogen peroxide (H2O2) sensor. The composite films were highly electroactive in a neutral environment as compared to polyaniline (PAn). In addition, the carboxyl group of the PAA was found to react with H2O2 to form peroxy acid groups, and the peroxy acid could further oxidize the imine structure of PAn to form N-oxides. The N-oxides reverted to their original form via electrochemical reduction and increased the reduction current. Based on this result, PAn-PAA was used to modify a gold electrode (PAn-PAA/Au) as a working electrode for the non-enzymatic detection of H2O2. The characteristics of the proposed sensors could be tuned by the PAA/PAn molar ratio. Blending PAA with PAn enhanced the surface area, electrocatalytic activity, and conductivity of these sensors. Under optimal conditions, the linear concentration range of the H2O2 sensor was 0.04 to 12 mM with a sensitivity of 417.5 ÎĽA/mM-cm2. This enzyme-free H2O2 sensor also exhibited a rapid response time, excellent stability, and high selectivity

    The Apostasia genome and the evolution of orchids

    Get PDF
    Constituting approximately 10% of flowering plant species, orchids (Orchidaceae) display unique flower morphologies, possess an extraordinary diversity in lifestyle, and have successfully colonized almost every habitat on Earth(1-3). Here we report the draft genome sequence of Apostasia shenzhenica(4), a representative of one of two genera that form a sister lineage to the rest of the Orchidaceae, providing a reference for inferring the genome content and structure of the most recent common ancestor of all extant orchids and improving our understanding of their origins and evolution. In addition, we present transcriptome data for representatives of Vanilloideae, Cypripedioideae and Orchidoideae, and novel third-generation genome data for two species of Epidendroideae, covering all five orchid subfamilies. A. shenzhenica shows clear evidence of a whole-genome duplication, which is shared by all orchids and occurred shortly before their divergence. Comparisons between A. shenzhenica and other orchids and angiosperms also permitted the reconstruction of an ancestral orchid gene toolkit. We identify new gene families, gene family expansions and contractions, and changes within MADS-box gene classes, which control a diverse suite of developmental processes, during orchid evolution. This study sheds new light on the genetic mechanisms underpinning key orchid innovations, including the development of the labellum and gynostemium, pollinia, and seeds without endosperm, as well as the evolution of epiphytism; reveals relationships between the Orchidaceae subfamilies; and helps clarify the evolutionary history of orchids within the angiosperms

    High-Density Transcriptional Initiation Signals Underline Genomic Islands in Bacteria

    Get PDF
    Genomic islands (GIs), frequently associated with the pathogenicity of bacteria and having a substantial influence on bacterial evolution, are groups of “alien” elements which probably undergo special temporal–spatial regulation in the host genome. Are there particular hallmark transcriptional signals for these “exotic” regions? We here explore the potential transcriptional signals that underline the GIs beyond the conventional views on basic sequence composition, such as codon usage and GC property bias. It showed that there is a significant enrichment of the transcription start positions (TSPs) in the GI regions compared to the whole genome of Salmonella enterica and Escherichia coli. There was up to a four-fold increase for the 70% GIs, implying high-density TSPs profile can potentially differentiate the GI regions. Based on this feature, we developed a new sliding window method GIST, Genomic-island Identification by Signals of Transcription, to identify these regions. Subsequently, we compared the known GI-associated features of the GIs detected by GIST and by the existing method Islandviewer to those of the whole genome. Our method demonstrates high sensitivity in detecting GIs harboring genes with biased GI-like function, preferred subcellular localization, skewed GC property, shorter gene length and biased “non-optimal” codon usage. The special transcriptional signals discovered here may contribute to the coordinate expression regulation of foreign genes. Finally, by using GIST, we detected many interesting GIs in the 2011 German E. coli O104:H4 outbreak strain TY-2482, including the microcin H47 system and gene cluster ycgXEFZ-ymgABC that activates the production of biofilm matrix. The aforesaid findings highlight the power of GIST to predict GIs with distinct intrinsic features to the genome. The heterogeneity of cumulative TSPs profiles may not only be a better identity for “alien” regions, but also provide hints to the special evolutionary course and transcriptional regulation of GI regions

    Genome-Wide Association Study of Lung Adenocarcinoma in East Asia and Comparison With a European Population

    Get PDF
    Lung adenocarcinoma is the most common type of lung cancer. Known risk variants explain only a small fraction of lung adenocarcinoma heritability. Here, we conducted a two-stage genome-wide association study of lung adenocarcinoma of East Asian ancestry (21,658 cases and 150,676 controls; 54.5% never-smokers) and identified 12 novel susceptibility variants, bringing the total number to 28 at 25 independent loci. Transcriptome-wide association analyses together with colocalization studies using a Taiwanese lung expression quantitative trait loci dataset (n = 115) identified novel candidate genes, including FADS1 at 11q12 and ELF5 at 11p13. In a multi-ancestry meta-analysis of East Asian and European studies, four loci were identified at 2p11, 4q32, 16q23, and 18q12. At the same time, most of our findings in East Asian populations showed no evidence of association in European populations. In our studies drawn from East Asian populations, a polygenic risk score based on the 25 loci had a stronger association in never-smokers vs. individuals with a history of smoking (Pinteraction = 0.0058). These findings provide new insights into the etiology of lung adenocarcinoma in individuals from East Asian populations, which could be important in developing translational applications
    • …
    corecore