969 research outputs found
Rotating day and night disturb growth hormone secretion profiles, body energy metabolism, and insulin levels in mice
Background: Insulin and growth hormone (GH) - 2 vital metabolic regulatory hormones - regulate glucose, lipid, and energy metabolism. These 2 hormones determine substrate and energy metabolism under different living conditions. Shift of day and night affects the clock system and metabolism probably through altered insulin and GH secretion. Methods: Five-week-old male mice were randomly assigned to a rotating light (RL) group (3-day normal light/dark cycle followed by 4-day reversed light/dark cycle per week) and normal light (NL) group. Body weight and food intake were recorded every week. Series of blood samples were collected for pulsatile GH analysis, glucose tolerance test, and insulin tolerance test at 9, 10, and 11 weeks from the start of intervention, respectively. Indirect calorimetric measurement was performed, and body composition was tested at 12 weeks. Expressions of energy and substrate metabolism-related genes were evaluated in pituitary and liver tissues at the end of 12-week intervention. Results: The RL group had an increased number of GH pulsatile bursts and reduced GH mass/burst. RL also disturbed the GH secretion regularity and mode. It suppressed insulin secretion, which led to a disturbed insulin/GH balance. It was accompanied by the reduced metabolic flexibility and modified gene expression involved in energy balance and substrate metabolism. Indirect calorimeter recording revealed that RL decreased the respiratory exchange ratio (RER) and oxygen consumption at the dark phase, which resulted in an increase in fat mass and free fatty acid levels in circulation. Conclusion: RL disturbed pulsatile GH secretion and decreased insulin secretion in male mice with significant impairment in energy, substrate metabolism, and body composition.Diabetes mellitus: pathophysiological changes and therap
Phase transitions in geometrothermodynamics
Using the formalism of geometrothermodynamics, we investigate the geometric
properties of the equilibrium manifold for diverse thermodynamic systems.
Starting from Legendre invariant metrics of the phase manifold, we derive
thermodynamic metrics for the equilibrium manifold whose curvature becomes
singular at those points where phase transitions of first and second order
occur. We conclude that the thermodynamic curvature of the equilibrium
manifold, as defined in geometrothermodynamics, can be used as a measure of
thermodynamic interaction in diverse systems with two and three thermodynamic
degrees of freedom
Cardy condition for open-closed field algebras
Let be a vertex operator algebra satisfying certain reductivity and
finiteness conditions such that , the category of V-modules, is
a modular tensor category. We study open-closed field algebras over V equipped
with nondegenerate invariant bilinear forms for both open and closed sectors.
We show that they give algebras over certain \C-extension of the Swiss-cheese
partial dioperad, and we obtain Ishibashi states easily in such algebras. We
formulate Cardy condition algebraically in terms of the action of the modular
transformation on the space of intertwining
operators. We then derive a graphical representation of S in the modular tensor
category . This result enables us to give a categorical
formulation of Cardy condition and modular invariant conformal full field
algebra over . Then we incorporate the modular invariance condition
for genus-one closed theory, Cardy condition and the axioms for open-closed
field algebra over V equipped with nondegenerate invariant bilinear forms into
a tensor-categorical notion called Cardy -algebra. We also give a categorical construction of Cardy
-algebra in Cardy case.Comment: 70 page, 105 figures, references are updated. less typos, to appear
in Comm. Math. Phy
Franck-Condon Effect in Central Spin System
We study the quantum transitions of a central spin surrounded by a
collective-spin environment. It is found that the influence of the
environmental spins on the absorption spectrum of the central spin can be
explained with the analog of the Franck-Condon (FC) effect in conventional
electron-phonon interaction system. Here, the collective spins of the
environment behave as the vibrational mode, which makes the electron to be
transitioned mainly with the so-called "vertical transitions" in the
conventional FC effect. The "vertical transition" for the central spin in the
spin environment manifests as, the certain collective spin states of the
environment is favored, which corresponds to the minimal change in the average
of the total spin angular momentum.Comment: 8 pages, 8 figure
Topological Charged Black Holes in High Dimensional Spacetimes and Their Formation from Gravitational Collapse of a Type II Fluid
Topological charged black holes coupled with a cosmological constant in
spacetimes are studied, where is an Einstein
space of the form . The global structure for
the four-dimensional spacetimes with is investigated systematically.
The most general solutions that represent a Type fluid in such a high
dimensional spacetime are found, and showed that topological charged black
holes can be formed from the gravitational collapse of such a fluid. When the
spacetime is (asymptotically) self-similar, the collapse always forms black
holes for , in contrast to the case , where it can form
either balck holes or naked singularities.Comment: 14 figures, to appear in Phys. Rev.
Young and Intermediate-age Distance Indicators
Distance measurements beyond geometrical and semi-geometrical methods, rely
mainly on standard candles. As the name suggests, these objects have known
luminosities by virtue of their intrinsic proprieties and play a major role in
our understanding of modern cosmology. The main caveats associated with
standard candles are their absolute calibration, contamination of the sample
from other sources and systematic uncertainties. The absolute calibration
mainly depends on their chemical composition and age. To understand the impact
of these effects on the distance scale, it is essential to develop methods
based on different sample of standard candles. Here we review the fundamental
properties of young and intermediate-age distance indicators such as Cepheids,
Mira variables and Red Clump stars and the recent developments in their
application as distance indicators.Comment: Review article, 63 pages (28 figures), Accepted for publication in
Space Science Reviews (Chapter 3 of a special collection resulting from the
May 2016 ISSI-BJ workshop on Astronomical Distance Determination in the Space
Age
A statistical interpretation of the correlation between intermediate mass fragment multiplicity and transverse energy
Multifragment emission following Xe+Au collisions at 30, 40, 50 and 60 AMeV
has been studied with multidetector systems covering nearly 4-pi in solid
angle. The correlations of both the intermediate mass fragment and light
charged particle multiplicities with the transverse energy are explored. A
comparison is made with results from a similar system, Xe+Bi at 28 AMeV. The
experimental trends are compared to statistical model predictions.Comment: 7 pages, submitted to Phys. Rev.
Mass measurements of neutron-deficient Y, Zr, and Nb isotopes and their impact on rp and Îœp nucleosynthesis processes
© 2018 The Authors. Published by Elsevier B.V. This manuscript is made available under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence (CC BY-NC-ND 4.0). For further details please see: https://creativecommons.org/licenses/by-nc-nd/4.0/Using isochronous mass spectrometry at the experimental storage ring CSRe in Lanzhou, the masses of 82Zr and 84Nb were measured for the first time with an uncertainty of âŒ10 keV, and the masses of 79Y, 81Zr, and 83Nb were re-determined with a higher precision. The latter are significantly less bound than their literature values. Our new and accurate masses remove the irregularities of the mass surface in this region of the nuclear chart. Our results do not support the predicted island of pronounced low α separation energies for neutron-deficient Mo and Tc isotopes, making the formation of ZrâNb cycle in the rp-process unlikely. The new proton separation energy of 83Nb was determined to be 490(400) keV smaller than that in the Atomic Mass Evaluation 2012. This partly removes the overproduction of the p-nucleus 84Sr relative to the neutron-deficient molybdenum isotopes in the previous Îœp-process simulations.Peer reviewe
Interacting Ghost Dark Energy in Non-Flat Universe
A new dark energy model called "ghost dark energy" was recently suggested to
explain the observed accelerating expansion of the universe. This model
originates from the Veneziano ghost of QCD. The dark energy density is
proportional to Hubble parameter, , where is a
constant of order and is
QCD mass scale. In this paper, we extend the ghost dark energy model to the
universe with spatial curvature in the presence of interaction between dark
matter and dark energy. We study cosmological implications of this model in
detail. In the absence of interaction the equation of state parameter of ghost
dark energy is always and mimics a cosmological constant in the
late time, while it is possible to have provided the interaction is
taken into account. When , all previous results of ghost dark energy in
flat universe are recovered. To check the observational consistency, we use
Supernova type Ia (SNIa) Gold sample, shift parameter of Cosmic Microwave
Background radiation (CMB) and the Baryonic Acoustic Oscillation peak from
Sloan Digital Sky Survey (SDSS). The best fit values of free parameter at
confidence interval are: ,
and . Consequently
the total energy density of universe at present time in this model at 68% level
equates to .Comment: 19 pages, 9 figures. V2: Added comments, observational consequences,
references, figures and major corrections. Accepted for publication in
General Relativity and Gravitatio
Analytical solutions to zeroth-order dispersion relations of a cylindrical metallic nanowire
Zeroth-order complex dispersion relations of a cylindrical metallic nanowire
have been solved out analytically with approximate methods. The analytical
solutions are valid for the sections of the dispersion relations whose
frequencies are close to the Surface Plasmon frequency. The back bending of the
Surface Plasmon-Polaritons(SPPs) can be well described by the analytical
solutions, confirming that the back bending is originated from the metal Ohmic
loss. The utility of the back bending point in the dispersion relation for the
measurement of the metallic Ohimc loss has also been suggested.Comment: 6pages, 3figure
- âŠ