68 research outputs found

    A neural networks-based in-process adaptive surface roughness control (NN-IASRC) system in end-milling operations

    Get PDF
    In this research, the neural networks-based in-process adaptive surface roughness control (NN-IASRC) system employing multiple cutting tools was successfully developed for end-milling operations. The dynamometer sensor was used to monitor the uncontrolled cutting tool conditions to increase the accuracy of the surface roughness control. An empirical approach was applied to discover the proper cutting force signals, the average resultant peak force in XY plane ( Fap) and the absolute average force in the Z direction (Faz). These two forces were employed to represent the uncontrollable cutting tool conditions for surface roughness control. A statistical method was employed to verify that the cutting tools could influence the surface roughness, and obtain the correlation between surface roughness and the cutting force signals for the preparation of constructing the NN-IASRC system.;A neural networks theorem was successfully applied to build the NN-IASRC system. The neural networks associated with sensing technology were applied as a decision-making technique to control the surface roughness for a wide range of machining parameters. The NN-IASRC system consisted of two subsystems. One was the in-process neural networks based surface roughness prediction (INN-SRP) system, which was employed to predict the surface roughness. The other was the neural networks based adaptive machining parameters control (NN-APMC) system, which was utilized to adjust the adaptive degree of feed rate when the quality of predicted surface roughness did not fit the desired one. The accuracy of the INN-SRP system was 93%, and 100% for the NN-IASRC system. The high accuracy of results within a wide range of machining parameters indicates that the system can be practically applied in industry

    Identifying causes of Western Pacific ITCZ drift in ECMWF System 4 hindcasts

    Get PDF
    The development of systematic biases in climate models used in operational seasonal forecasting adversely affects the quality of forecasts they produce. In this study, we examine the initial evolution of systematic biases in the ECMWF System 4 forecast model, and isolate aspects of the model simulations that lead to the development of these biases. We focus on the tendency of the simulated intertropical convergence zone in the western equatorial Pacific to drift northwards by between 0.5° and 3° of latitude depending on season. Comparing observations with both fully coupled atmosphere–ocean hindcasts and atmosphere-only hindcasts (driven by observed sea-surface temperatures), we show that the northward drift is caused by a cooling of the sea-surface temperature on the Equator. The cooling is associated with anomalous easterly wind stress and excessive evaporation during the first twenty days of hindcast, both of which occur whether air-sea interactions are permitted or not. The easterly wind bias develops immediately after initialisation throughout the lower troposphere; a westerly bias develops in the upper troposphere after about ten days of hindcast. At this point, the baroclinic structure of the wind bias suggests coupling with errors in convective heating, although the initial wind bias is barotropic in structure and appears to have an alternative origin

    SeamlessM4T-Massively Multilingual & Multimodal Machine Translation

    Full text link
    What does it take to create the Babel Fish, a tool that can help individuals translate speech between any two languages? While recent breakthroughs in text-based models have pushed machine translation coverage beyond 200 languages, unified speech-to-speech translation models have yet to achieve similar strides. More specifically, conventional speech-to-speech translation systems rely on cascaded systems that perform translation progressively, putting high-performing unified systems out of reach. To address these gaps, we introduce SeamlessM4T, a single model that supports speech-to-speech translation, speech-to-text translation, text-to-speech translation, text-to-text translation, and automatic speech recognition for up to 100 languages. To build this, we used 1 million hours of open speech audio data to learn self-supervised speech representations with w2v-BERT 2.0. Subsequently, we created a multimodal corpus of automatically aligned speech translations. Filtered and combined with human-labeled and pseudo-labeled data, we developed the first multilingual system capable of translating from and into English for both speech and text. On FLEURS, SeamlessM4T sets a new standard for translations into multiple target languages, achieving an improvement of 20% BLEU over the previous SOTA in direct speech-to-text translation. Compared to strong cascaded models, SeamlessM4T improves the quality of into-English translation by 1.3 BLEU points in speech-to-text and by 2.6 ASR-BLEU points in speech-to-speech. Tested for robustness, our system performs better against background noises and speaker variations in speech-to-text tasks compared to the current SOTA model. Critically, we evaluated SeamlessM4T on gender bias and added toxicity to assess translation safety. Finally, all contributions in this work are open-sourced and accessible at https://github.com/facebookresearch/seamless_communicatio

    A planet within the debris disk around the pre-main-sequence star AU Microscopii

    Full text link
    AU Microscopii (AU Mic) is the second closest pre main sequence star, at a distance of 9.79 parsecs and with an age of 22 million years. AU Mic possesses a relatively rare and spatially resolved3 edge-on debris disk extending from about 35 to 210 astronomical units from the star, and with clumps exhibiting non-Keplerian motion. Detection of newly formed planets around such a star is challenged by the presence of spots, plage, flares and other manifestations of magnetic activity on the star. Here we report observations of a planet transiting AU Mic. The transiting planet, AU Mic b, has an orbital period of 8.46 days, an orbital distance of 0.07 astronomical units, a radius of 0.4 Jupiter radii, and a mass of less than 0.18 Jupiter masses at 3 sigma confidence. Our observations of a planet co-existing with a debris disk offer the opportunity to test the predictions of current models of planet formation and evolution.Comment: Nature, published June 24th [author spelling name fix

    Postoperative complications after procedure for prolapsed hemorrhoids (PPH) and stapled transanal rectal resection (STARR) procedures

    Get PDF
    Procedure for prolapsing hemorrhoids (PPH) and stapled transanal rectal resection for obstructed defecation (STARR) carry low postoperative pain, but may be followed by unusual and severe postoperative complications. This review deals with the pathogenesis, prevention and treatment of adverse events that may occasionally be life threatening. PPH and STARR carry the expected morbidity following anorectal surgery, such as bleeding, strictures and fecal incontinence. Complications that are particular to these stapled procedures are rectovaginal fistula, chronic proctalgia, total rectal obliteration, rectal wall hematoma and perforation with pelvic sepsis often requiring a diverting stoma. A higher complication rate and worse results are expected after PPH for fourth-degree piles. Enterocele and anismus are contraindications to PPH and STARR and both operations should be used with caution in patients with weak sphincters. In conclusion, complications after PPH and STARR are not infrequent and may be difficult to manage. However, if performed in selected cases by skilled specialists aware of the risks and associated diseases, some complications may be prevented

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Physiological responses of plants to low boron

    No full text
    This review focuses on physiological responses in higher plants to B deficiency at the whole plant and organ level. Plants respond to decreasing B supply in soil solutions by slowing down or ceasing growth. Boron deficiency inhibits root elongation through limiting cell enlargement and cell division in the growing zone of root tips. In the case of severe B deficiency, the root cap, quiescent centre and protoderm of root tips disappear and root growth ceases, leading to the death of root tips. Although vascular bundles are weakly developed in B-deficient roots, early effects of B deficiency on their initiation and differentiation is poorly understood. Inhibited leaf expansion by low B indirectly decreases the photosynthetic capacity of plants, though exact roles of B in photosynthesis remain to be explored. The early inhibition of root growth, compared to shoot growth, increases the shoot:root ratio. It is hypothesised that this may enhance the susceptibility of plants to environmental stresses such as marginally deficient supplies of other nutrients and water deficit in soil. In the field, sexual reproduction is often more sensitive to low soil B than vegetative growth, and marked seed yield reductions can occur without symptoms being expressed during prior vegetative growth. In flowers, low B reduces male fertility primarily by impairing microsporogenesis and pollen tube growth. Post-fertilisation effects include impaired embryogenesis, resulting in seed abortion or the formation of incomplete or damaged embryos, and malformed fruit. However, there is a great diversity of effects of low B on reproductive growth among species, and within the same species between sites and seasons. Much of this diversity is not explained by the current literature. Key processes in reproductive development which may be impaired under B deficiency are proposed and discussed. These include the formation of a diverse array of cell wall types, the supply of carbohydrates for growth and storage reserves, and the production of flavonols. Inflorescence architecture, floral morphology, canopy structure and prevailing weather conditions are suggested as being important for xylem B delivery into flowers because of their impact on transpiration. The extent of phloem translocation of B into reproductive organs has yet to be fully assessed. The timing of B sensitive stages in reproduction of most crop plants need defining in order to facilitate appropriate timing of corrective B treatments. As most container studies have imposed B deficiency by withholding B, much of the data on severely B-deficient plants requires re-evaluation. Further studies are warranted to understand the effects of realistically low levels of B in solution on the growth of meristematic tissues and floral organs. A B-buffered solution culture system is recommended for some of this work

    Factors controlling equilibrium boron (B) concentration in nutrient solution buffered with B-specific resin (Amberlite IRA-743)

    No full text
    In conventional solution culture where boron (B) is added as boric acid, fluctuating external B supply often produces confounding and ill-defined physiological and biochemical responses in plants, especially when grown at deficient and marginal B supply. Our previous studies proposed the use of the B-specific resin – Amberlite IRA-743 to develop a B-buffered solution culture. The present study aims to evaluate crucial factors determining equilibrium B concentrations in nutrient solution buffered with the B-loaded resin, including the B loading of the resin, pH in the nutrient solution and B removal from the solution. The equilibrium B concentrations in nutrient solution were determined by both the amount of B sorbed by the resin and the solution pH. At pH 6.05±0.05, the relationship between the resin B content and equilibrium B concentration in the nutrient solution is closely described by the equation: Y = 18.8 X1.457 [ where, Y = equilibrium B concentration (μM) in nutrient solution and X = B content of the resin (mg B g−1 moist resin)]. However, at a given resin B content, lowering solution pH from 7 to 4 significantly increased B concentrations in solution through the release of B from the solid phase of the resin beads. The B-loaded resin was capable of maintaining stable B concentrations in the nutrient solutions, ranging from deficient to marginally adequate B concentrations for dicot species. In conclusion, B concentrations ranging from 0.05 to 11 μM, were buffered for 5 days with the resin loaded with 0.004 – 0.691 mg B g−1 moist resin in the nutrient solution. Precise pH control in the nutrient solution is critical for the success of a B-buffered solution culture study

    Enhanced boron transport into the ear of wheat as a mechanism for boron efficiency

    No full text
    Genotypic variation in boron (B) efficiency in wheat (Triticum aestivum L.) is expressed as large differences in grain set and pollen fertility under low soil B, but the mechanisms responsible for such differences are unknown. This paper aims to determine whether differences in B transport and retranslocation can explain cultivar differences in B efficiency between B-efficient (Fang 60) and B-inefficient (SW41) wheat cultivars. Plants were grown with adequate 11B (10 μM), until the premeiotic interphase stage in anther development, then transferred into 10B at 0.1 or 10 μM. After five days, ending at the young microspore stage, plants were returned to adequate 11B. Plants were harvested at 0, 1 and 5 days after transferring into 10B, and at anthesis when fresh pollen was examined for viability. After 5 days in 0.1 μM B, pollen viability in SW41 was depressed by 47%, but pollen of Fang 60 was not affected. When B supply was low, the proportion of plant B partitioned into the ear of Fang 60 was almost twice as high as that in SW 41, enabling Fang 60 to maintain B concentration in the ear at 6.8 mg kg−1 dry weight (DW), whereas it dropped to 3.8 mg kg−1 DW in SW 41. Boron accumulation in the ear, when external supply was restricted, did not come from the 11B previously taken up by the plant. The greater 10B accumulation in ears of Fang 60 compared to SW 41, with limited external B supply, indicated that B efficiency was associated with xylem transport of B. The greater increase of 10B:11B ratio in the ear of Fang 60 compared to SW 41, over the 5 days of B interruption further indicated that greater B efficiency was associated with a stronger capability for long distance transport of B from the rooting medium into the ear via the xylem rather with than retranslocation of B from vegetative parts
    corecore