68 research outputs found

    Estimating groundwater recharge for Great Britain

    Get PDF
    Groundwater plays an important role in supporting public water supplies and sustaining river flows. For example, groundwater supplies up to 80% drinking water in southern England. Groundwater recharge determines how much water is available to groundwater system. It is necessary to develop a groundwater recharge model for Great Britain to support the national water resource management. A national groundwater model was constructed using a SLiM model in this study. SLiM, a distributed rainfall-runoff-recharge model, can objectively estimate groundwater recharge and surface runoff based on climate and catchment characteristics. The datasets of Digital Terrain Model (DTM), daily distributed rainfall, potential evapotranspiration, land-cover and hydrology of soil types were collected in this study. The model was then calibrated using river flow datasets from 102 gauging stations across Great Britain. Nash–Sutcliffe coefficient was used to measure the goodness-of-fit between modelled and observed river flow. After calibration, the Nash–Sutcliffe coefficient values for more than 70% of the gauging stations are larger than 0.5. This means that this model can be used to provide sensible groundwater recharge across Great Britain. The model can produce both long-term-average and daily time variant distributed groundwater recharge in Great Britain. Therefore, it can be used to feed recharge datasets to other groundwater models, such as groundwater flow, groundwater vulnerability assessment, and groundwater pollutant transport models. This can also be a basis to investigate the impacts of climate and land-cover changes on groundwater recharge and hence the groundwater system

    Study on mechanical properties and microstructure of steel-polypropylene fiber coal gangue concrete

    Get PDF
    Incorporating coal gangue into the concrete matrix can realize the utilization of solid waste and reduce the use of natural aggregate. To improve the mechanical properties of coal gangue concrete, this paper designs four-level and four-factor orthogonal tests with coal gangue ceramide substitution rate, coal gangue ceramide sand substitution rate, steel fiber content, and polypropylene fiber content as independent variables. Through multidimensional data analysis of the test results, The main and secondary factors of compressive strength of hybrid fiber coal gangue concrete from strong to weak are the replacement rate of coal gangue ceramic sand, the replacement rate of coal gangue ceramic grain, the content of steel fiber and the content of polypropylene fiber. The optimal content is 30% coal gangue ceramic particle, 25∼30% coal gangue ceramic sand, 0.75∼1% steel fiber, and 0.2% polypropylene fiber. The grey prediction model GM (1, 5) is obtained, which can predict the concrete strength well within the range selected in this paper. The influence of fiber and coal gangue on the microstructure was studied by scanning electron microscopy, and the influence law of interfacial transition zone on the strength of concrete was explored, which provided a theoretical basis for the study of solid waste utilization of coal gangue

    Increased inorganic aerosol fraction contributes to air pollution and haze in China

    Get PDF
    The detailed formation mechanism of an increased number of haze events in China is still not very clear. Here, we found that reduced surface visibility from 1980 to 2010 and an increase in satellite-derived columnar concentrations of inorganic precursors from 2002 to 2012 are connected with each other. Typically, higher inorganic mass fractions lead to increased aerosol water uptake and light-scattering ability in elevated relative humidity. Satellite observation of aerosol precursors of NO2 and SO2 showed increased concentrations during the study period. Our in situ measurement of aerosol chemical composition in Beijing also confirmed increased contribution of inorganic aerosol fraction as a function of the increased particle pollution level. Our investigations demonstrate that the increased inorganic fraction in the aerosol particles is a key component in the frequently occurring haze days during the study period, and particularly the reduction of nitrate, sulfate and their precursor gases would contribute towards better visibility in China.Peer reviewe

    Mitigating NO_x emissions does not help alleviate wintertime particulate pollution in Beijing-Tianjin-Hebei (BTH), China

    Get PDF
    Stringent mitigation measures have reduced wintertime PM_(2.5) concentrations by 42.2% from 2013 to 2018 in the BTH. The observed nitrate aerosols have not exhibited a significant decreasing trend and constituted a major fraction (about 20%) of the total PM_(2.5), although the surface-measured NO₂ level has decreased by over 20%. It still remains elusive about contributions of nitrogen oxides (NO_x) emissions mitigation to the nitrate and PM_(2.5) level. The WRF-Chem model simulations of a persistent haze episode in January 2019 in the BTH reveal that NO_x emissions mitigation does not help lower wintertime nitrate and PM_(2.5) concentrations under current conditions in the BTH, because the substantial O₃ increase induced by NO_x mitigation offsets the HNO₃ loss and enhances sulfate and secondary organic aerosols formation. Our results are further consolidated by occurrence of the severe PM pollution in the BTH during the COVID-19 outbreak with a significant reduction of NO₂

    Mitigating NO_x emissions does not help alleviate wintertime particulate pollution in Beijing-Tianjin-Hebei (BTH), China

    Get PDF
    Stringent mitigation measures have reduced wintertime PM_(2.5) concentrations by 42.2% from 2013 to 2018 in the BTH. The observed nitrate aerosols have not exhibited a significant decreasing trend and constituted a major fraction (about 20%) of the total PM_(2.5), although the surface-measured NO₂ level has decreased by over 20%. It still remains elusive about contributions of nitrogen oxides (NO_x) emissions mitigation to the nitrate and PM_(2.5) level. The WRF-Chem model simulations of a persistent haze episode in January 2019 in the BTH reveal that NO_x emissions mitigation does not help lower wintertime nitrate and PM_(2.5) concentrations under current conditions in the BTH, because the substantial O₃ increase induced by NO_x mitigation offsets the HNO₃ loss and enhances sulfate and secondary organic aerosols formation. Our results are further consolidated by occurrence of the severe PM pollution in the BTH during the COVID-19 outbreak with a significant reduction of NO₂

    Chemistry of new particle formation and growth events during wintertime in suburban area of Beijing : Insights from highly polluted atmosphere

    Get PDF
    The high frequency of new particle formation (NPF) events observed under polluted atmospheric conditions is still poorly understood. To improve our understanding of NPF and its effects, the particle number size distribution (3-1000 nm) and submicron particle chemical composition were measured from 4 November 2017 to 17 January 2018 in suburban Beijing. During this intense campaign, 22 NPF events were identified with a frequency of 29%, including 11 cases that occurred under "clean" conditions (C-NPF) and 11 cases that occurred under "polluted" conditions (P-NPF). The observed formation rate (J(3)) and condensation sink were 4.6-148.9 cm(-3).s(-1) and 0.01-0.07 s(-1), and the majority of NPF events occurred when the condensation sink (CS) values below 0.03 s(-1), indicating that condensation vapor likely constitutes the critical limiting factor for NPF events. The correlations between log J(3) and [H2SO4] that close to previous CLOUD experimental results in the majority of NPF events (68%) suggest the high nucleation rates (up to 100 cm(-3).s(-1)) would be attributed by the amines that enhancing sulfuric acid nucleation, while the reminding cases (32%) possibly attributed to the H2SO4-NH3 clustering mechanism, which is supported by the theoretical expectations for H2SO4 nucleation with NH3 simulated by the MALTE_BOX model. The observed growth rate varied from 4.9 to 37.0 mm.h(-1), with the dominant contribution (>60%) from sulfuric acid during the early phases of growth (similar to 4 nm), which was also sufficient to explain the observed Q(GR) for 50 nm)Peer reviewe

    Rapid formation of intense haze episodes via aerosol-boundary layer feedback in Beijing

    Get PDF
    Although much effort has been put into studying air pollution, our knowledge of the mechanisms of frequently occurring intense haze episodes in China is still limited. In this study, using 3 years of measurements of air pollutants at three different height levels on a 325m Beijing meteorology tower, we found that a positive aerosol-boundary layer feedback mechanism existed at three vertical observation heights during intense haze polluted periods within the mixing layer. This feedback was characterized by a higher loading of PM2.5 with a shallower mixing layer. Modelling results indicated that the presence of PM2.5 within the boundary layer led to reduced surface temperature, relative humidity and mixing layer height during an intensive haze episode. Measurements showed that the aerosol-boundary layer feedback was related to the decrease in solar radiation, turbulent kinetic energy and thereby suppression of the mixing layer. The feedback mechanism can explain the rapid formation of intense haze episodes to some extent, and we suggest that the detailed feedback mechanism warrants further investigation from both model simulations and field observations.Peer reviewe

    The East Asian-specific LPL p.Ala288Thr (c.862G > A) missense variant exerts a mild effect on protein function

    Get PDF
    Background: Lipoprotein lipase (LPL) is the key enzyme responsible for the hydrolysis of triglycerides. Loss-of-function variants in the LPL gene are associated with hypertriglyceridemia (HTG) and HTG-related diseases. Unlike nonsense, frameshift and canonical GT-AG splice site variants, a pathogenic role for clinically identified LPL missense variants should generally be confirmed by functional analysis. Herein, we describe the clinical and functional analysis of a rare LPL missense variant. Methods: Chinese patients with HTG-associated acute pancreatitis (HTG-AP) were screened for rare nonsense, frameshift, missense or canonical GT-AG splice site variants in LPL and four other lipid metabolism-related genes (APOC2, APOA5, GPIHBP1 and LMF1) by Sanger sequencing. The functional consequences of the LPL missense variant of interest were characterized by in vitro expression in HEK-293T and COS-7 cells followed by Western blot and LPL activity assays. Results: Five unrelated HTG-AP patients were found to be heterozygous for a rare East Asian-specific LPL missense variant, c.862G > A (p.Ala288Thr). All five patients were adult males, and all were overweight and had a long history of alcohol consumption. Transfection of LPL wild-type and c.862G > A expression vectors into two cell lines followed by Western blot analysis served to exclude the possibility that the p.Ala288Thr missense variant either impaired protein synthesis or increased protein degradation. Contrary to a previous functional study that claimed that p.Ala288Thr had a severe impact on LPL function (reportedly having 36% normal activity), our experiments consistently demonstrated that the variant had a comparatively mild effect on LPL functional activity, which was mediated through its impact upon LPL protein secretion (~ 20% reduced secretion compared to wild-type). Conclusions: In this study, we identified the East Asian-specific LPL c.862G > A (p.Ala288Thr) missense variant in five unrelated HTG-AP patients. We demonstrated that this variant exerted only a relatively mild effect on LPL function in two cell lines. Heterozygosity for this LPL variant may have combined with alcohol consumption to trigger HTG-AP in these patients
    corecore