2,139 research outputs found

    Impaired inflammatory pain and thermal hyperalgesia in mice expressing neuron-specific dominant negative mitogen activated protein kinase kinase (MEK)

    Get PDF
    BACKGROUND: Numerous studies have implicated spinal extracellular signal-regulated kinases (ERKs) as mediators of nociceptive plasticity. These studies have utilized pharmacological inhibition of MEK to demonstrate a role for ERK signaling in pain, but this approach cannot distinguish between effects of ERK in neuronal and non-neuronal cells. The present studies were undertaken to test the specific role of neuronal ERK in formalin-induced inflammatory pain. Dominant negative MEK (DN MEK) mutant mice in which MEK function is suppressed exclusively in neurons were tested in the formalin model of inflammatory pain. RESULTS: Formalin-induced second phase spontaneous pain behaviors as well as thermal hyperalgesia measured 1 – 3 hours post-formalin were significantly reduced in the DN MEK mice when compared to their wild type littermate controls. In addition, spinal ERK phosphorylation following formalin injection was significantly reduced in the DN MEK mice. This was not due to a reduction of the number of unmyelinated fibers in the periphery, since these were almost double the number observed in wild type controls. Further examination of the effects of suppression of MEK function on a downstream target of ERK phosphorylation, the A-type potassium channel, showed that the ERK-dependent modulation of the A-type currents is significantly reduced in neurons from DN MEK mice compared to littermate wild type controls. CONCLUSION: Our results demonstrate that the neuronal MEK-ERK pathway is indeed an important intracellular cascade that is associated with formalin-induced inflammatory pain and thermal hyperalgesia

    Effects of painful stimulation and acupuncture on attention networks in healthy subjects

    Get PDF
    Pain is a subjective sensory and emotional experience, and it has been reported that many different brain regions are regulated by pain, and that pain can impact attention. Acupuncture is an important treatment component of Chinese traditional medicine, and has been used for thousands of years to treat a wide variety of conditions. Although several studies have shown that acupuncture improves consciousness, the precise impact of both acupuncture and painful stimulation on attention is unclear. Are all of the attention networks modulated, or do these stimuli act on a specific network? Is the effect of painful stimulation similar to that of acupuncture? We administered the attention network test to 30 participants (15 males) to investigate the relative efficiencies of three independent attention networks (alerting, orienting, and executive control networks) under three conditions: baseline, after painful stimulation, and after acupuncture. The degree of pain experienced was assessed on a horizontally oriented visual analogue scale. The results showed that painful stimulation and acupuncture had similar effects on the orienting and executive control networks; however, there was a significantly different effect between the three conditions on the alerting network. In conclusion, (1) painful stimulation can selectively impact attention; (2) acupuncture can also selectively impact attention; i.e., both have selective influences on the alerting and executive control networks, but not on the orienting network; (3) the effects of acupuncture and painful stimulation are not identical. The mechanisms by which painful stimulation and acupuncture influence attention warrant further research

    Factors influencing participant compliance in acupuncture trials: An in-depth interview study.

    Get PDF
    INTRODUCTION:Little is known of acupuncture patients' experiences and opinions of clinical trials, and what may influence their compliance when participating in an acupuncture trial. OBJECTIVES:To explore the potential factors that influence patients' choice and determinants to participate in acupuncture clinical trials. METHODS:Ten qualitative, in-depth interviews were conducted with patients from acupuncture clinics in Beijing, who had previously participated in acupuncture clinical trials. RESULTS:Four main themes emerged from the interview data: effectiveness of the treatment, convenience of participating in a trial, doctor-participant communication, and participant acceptance of the treatment (or the trial). Effectiveness of acupuncture in treating the health condition was the most important factor for participant adherence. Pragmatics of treatment schedules, travel and attendance burden, together with confidence in the doctor's ability additionally influenced trial and treatment compliance. CONCLUSIONS:In-depth interviews suggest that treatment effectiveness, the pragmatics of attending treatment sessions, and the expertise and attitudes of acupuncturists are determining factors of participation and compliance in acupuncture clinical trials. Participants' confidence in, and expectation of, acupuncture may facilitate compliance, while their fear of acupuncture and negative perceptions of the trial's purpose may reduce treatment compliance. Compliance may be facilitated by enhanced doctor-patient communication, personalized treatment programs, and feedback on treatment outcomes

    Applications of machine learning in familial hypercholesterolemia

    Get PDF
    Familial hypercholesterolemia (FH) is a common hereditary cholesterol metabolic disease that usually leads to an increase in the level of low-density lipoprotein cholesterol in plasma and an increase in the risk of cardiovascular disease. The lack of disease screening and diagnosis often results in FH patients being unable to receive early intervention and treatment, which may mean early occurrence of cardiovascular disease. Thus, more requirements for FH identification and management have been proposed. Recently, machine learning (ML) has made great progress in the field of medicine, including many innovative applications in cardiovascular medicine. In this review, we discussed how ML can be used for FH screening, diagnosis and risk assessment based on different data sources, such as electronic health records, plasma lipid profiles and corneal radian images. In the future, research aimed at developing ML models with better performance and accuracy will continue to overcome the limitations of ML, provide better prediction, diagnosis and management tools for FH, and ultimately achieve the goal of early diagnosis and treatment of FH

    Inhibition of Src Homology 2 Domain-Containing Protein Tyrosine Phosphatase-2 Facilitates CD31hiEndomucinhi Blood Vessel and Bone Formation in Ovariectomized Mice

    Get PDF
    Background/Aims: Recently, we and others showed that the relative abundance of a specific vessel subtype, strongly positive for CD31 and Endomucin (CD31hiEmcnhi), is associated with bone formation and bone loss, and platelet-derived growth factor-BB (PDGF-BB) secreted by preosteoclasts induces the formation of the specific vessels and thereby stimulates osteogenesis. Inhibition of Src homology 2 domain-containing protein tyrosine phosphatase-2 (SHP-2) has been shown to block the fusion of preosteoclasts into mature osteoclasts. However, it is unclear whether inhibition of SHP-2 could promote preosteoclast-induced angiogenesis and then enhance bone formation. This study aimed to determine the effects of a specific SHP-2 inhibitor (NSC-87877) on CD31 hiEmcnhi vessel and bone formation. Methods: 3-month-old C57BL/6 mice were subjected to either ovariectomy (OVX) or sham operation. OVX mice were intraperitoneally injected with NSC-87877 and the control (sham) mice were treated with an equal volume of diluents (PBS). Two months later, bone samples from mice were collected for µCT, histological, immunohistochemical and immunofluorescent analyses to assess bone mass, osteogenic and osteoclastic acitivities, as well as the densities of CD31hiEmcnhi vessels. A series of angiogenesis- related assays were performed to test the effects of NSC-87877 on the pro-angiogenic activities of preosteoclasts in vitro. Results: We found that NSC-87877 is sufficient to induce bone-sparing effects in OVX-induced osteoporotic mouse model. We also found that NSC-87877 induces higher numbers of preosteoclasts and CD31hiEmcnhi vessels and higher levels of PDGF-BB in bone marrow of osteoporotic mice. In vitro assays showed that NSC-87877 prevents preosteoclast fusion, increases PDGF-BB production, and augments the pro-angiogenic abilities of preosteoclasts. Conclusion: Our results suggest that NSC-87877 can be used as a promising therapeutic agent for osteoporosis by inhibiting osteoclast formation and promoting preosteoclast-induced angiogenesis

    Bioluminescence Imaging Allows Monitoring Hepatitis C Virus Core Protein Inhibitors in Mice

    Get PDF
    BACKGROUND: The development of small molecule inhibitors of hepatitis C virus (HCV) core protein as antiviral agents has been intensively pursued as a viable strategy to eradicate HCV infection. However, lack of a robust and convenient small animal model has hampered the assessment of in vivo efficacy of any antiviral compound. METHODOLOGY/PRINCIPAL FINDINGS: The objective of this work was to develop a novel method to screen anti-core protein siRNA in the mouse liver by bioluminescence imaging. The inhibitory effect of two shRNAs targeting the highly conserved core region of the HCV genome, shRNA452 and shRNA523, was examined using this method. In the transient mouse model, the effect of shRNA-523 was detectable at as early as 24 h and became even more pronounced at later time points. The effect of shRNA-452 was not detectable until 48 h post-transduction. In a stable mouse model, shRNA523 reduced luciferase levels by up to 76.4±26.0% and 91.8±8.0% at 6 h and 12 h after injection respectively, and the inhibitory effect persisted for 1 day after a single injection while shRNA-Scramble did not seem to have an effect on the luciferase activity in vivo. CONCLUSIONS/SIGNIFICANCE: Thus, we developed a simple and quantitative assay for real-time monitoring of HCV core protein inhibitors in mice

    L-Met Activates Arabidopsis GLR Ca2+ Channels Upstream of ROS Production and Regulates Stomatal Movement

    Get PDF
    Plant glutamate receptor homologs (GLRs) have long been proposed to function as ligand-gated Ca2+ channels, but no in planta evidence has been provided. Here, we present genetic evidence that Arabidopsis GLR3.1 and GLR3.5 form Ca2+ channels activated by L-methionine (L-Met) at physiological concentrations and regulate stomatal apertures and plant growth. The glr3.1/3.5 mutations resulted in a lower cytosolic Ca2+ level, defective Ca2+-induced stomatal closure, and Ca2+-deficient growth disorder, all of which involved L-Met. Patch-clamp analyses of guard cells showed that GLR3.1/3.5 Ca2+ channels are activated specifically by L-Met, with the activation abolished in glr3.1/3.5. Moreover, GLR3.1/3.5 Ca2+ channels are distinct from previously characterized ROS-activated Ca2+ channels and act upstream of ROS, providing Ca2+ transients necessary for the activation of NADPH oxidases. Our data indicate that GLR3.1/3.5 constitute L-Met-activated Ca2+ channels responsible for maintaining basal [Ca2+]cyt, play a pivotal role in plant growth, and act upstream of ROS, thereby regulating stomatal aperture. © 2016 Institute for Basic Science / DGIST1

    Highly magnetic iron carbide nanoparticles as effective T2 contrast agents

    Get PDF
    This paper reports that iron carbide nanoparticles with high air-stability and strong saturation magnetization can serve as effective T2 contrast agents for magnetic resonance imaging. Fe5C2 nanoparticles (~20 nm in diameter) exhibit strong contrast enhancement with an r2 value of 283.2 mM-1 S-1, which is about twice as high as that of spherical Fe3O4 nanoparticles (~140.9 mM-1 S-1). In vivo experiments demonstrate that Fe5C2 nanoparticles are able to produce much more significant MRI contrast enhancement than conventional Fe3O 4 nanoparticles in living subjects, which holds great promise in biomedical applications. ? 2013 The Royal Society of Chemistry

    Highly magnetic iron carbide nanoparticles as effective T-2 contrast agents

    Get PDF
    National Key Basic Research Program of China [2013CB933901, 2014CB744502]; National Natural Science Foundation of China [21222106, 81370042, 81000662, 81201805]; Natural Science Foundation of Fujian [2013J06005]; Program for New Century Excellent Talents in University [NCET-10-0709]This paper reports that iron carbide nanoparticles with high air-stability and strong saturation magnetization can serve as effective T-2 contrast agents for magnetic resonance imaging. Fe5C2 nanoparticles (similar to 20 nm in diameter) exhibit strong contrast enhancement with an r(2) value of 283.2 mM(-1) S-1, which is about twice as high as that of spherical Fe3O4 nanoparticles (similar to 140.9 mM(-1) S-1). In vivo experiments demonstrate that Fe5C2 nanoparticles are able to produce much more significant MRI contrast enhancement than conventional Fe3O4 nanoparticles in living subjects, which holds great promise in biomedical applications
    corecore