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Applications of machine learning
in familial hypercholesterolemia
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1Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University,
Nanchang, China, 2Department of Clinical Medicine, Nanchang University Queen Mary School, Nanchang,
China, 3Department of Nursing, Nanchang Medical College, Nanchang, China

Familial hypercholesterolemia (FH) is a common hereditary cholesterol metabolic
disease that usually leads to an increase in the level of low-density lipoprotein
cholesterol in plasma and an increase in the risk of cardiovascular disease. The
lack of disease screening and diagnosis often results in FH patients being unable
to receive early intervention and treatment, which may mean early occurrence
of cardiovascular disease. Thus, more requirements for FH identification and
management have been proposed. Recently, machine learning (ML) has made
great progress in the field of medicine, including many innovative applications in
cardiovascular medicine. In this review, we discussed how ML can be used for
FH screening, diagnosis and risk assessment based on different data sources,
such as electronic health records, plasma lipid profiles and corneal radian
images. In the future, research aimed at developing ML models with better
performance and accuracy will continue to overcome the limitations of ML,
provide better prediction, diagnosis and management tools for FH, and
ultimately achieve the goal of early diagnosis and treatment of FH.

KEYWORDS

familial hypercholesterolemia, machine learning, screening, diagnosis, risk assessment

1. Introduction

Familial hypercholesterolemia (FH) is a common autosomal dominant disease that is

an inherited metabolic disorder (1). The main characteristic of FH is abnormally high

levels of low-density lipoprotein cholesterol (LDL-C) in plasma, resulting in an

increased risk of early-onset atherosclerosis and premature cardiovascular disease (1, 2).

Heterozygous FH (HeFH) has a prevalence of 1 in 200–500 persons. Despite high

incidence rate, the global diagnostic rate still remains low, and in most countries only

1% FH patients are diagnosed (3, 4). Homozygous FH (HoFH) is rarer but more

severe, with an estimated prevalence of 1 in 300,000–360,000 persons, and it involves

higher LDL-C levels and physical signs, such as the early presence of cholesterol

deposits on the skin, eyes, and tendons (3, 5). Although there has been great progress

in the study of FH, some challenges remain. For example, statins and other lipid-

lowering therapies have been widely used, and the detection and treatment of FH is

still unsatisfactory (1, 6). Missed diagnosis at an early age can lead to severe

cardiovascular events (7, 8), but early lipid-lowering therapies can slow the onset of

coronary heart disease in FH patients (4). The initiation of lipid-lowering therapy in

FH patients in childhood slows the progression of atherosclerosis and reduces the

incidence of cardiovascular events in adulthood (9). Therefore, it is important to

diagnose and treat these patients early.

Artificial intelligence (AI) is a broad field that uses machines to imitate human

behaviors, including their thought processes, learning abilities, and knowledge storage
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abilities (10, 11). One of the core parts of AI is machine learning

(ML), which is a virtual branch of AI in medical applications

(12). ML refers to the ability of computers to learn from

experience, and ML models can use algorithms to detect patterns

in a series of existing data they receive and train themselves to

make predictions using new data (10, 13). In cardiovascular

medicine, ML has emerged in many fields, such as disease

prediction and diagnosis. For example, in a recent study, an

ML-based race-specific model was developed to predict the risk

of heart failure (14). Compared with performance of a model in

which race is a covariate, new ML models have better

performance (the C-index of the race-specific model for black

adults is 0.88, and that of the nonrace-specific model is 0.81)

(14). Another ML model (PRAISE score) was developed and

proven to be feasible in predicting all-cause death, myocardial

infarction, and major bleeding after acute coronary syndrome. In

an external test, this model showed an area under the curve

(AUC) of 0.92, 0.81 and 0.86 for these three events in one year,

respectively (15). In addition, an algorithm with superior

performance compared with that of a state-of-the-art algorithm

was used to automatically classify heart disease by recognizing

heartbeats with electrocardiogram signal features (16). In the

future, AI will play a pivotal role in the field of cardiovascular

diseases (11).

Recently, with the continuous research in ML in the

cardiovascular field, various types of ML models have been

progressively applied to FH. In this review, we provide an

overview of the application of ML in FH screening, diagnosis,

and risk assessment to help practicing clinicians and the general

public understand the following core issues: (1) What progress

has been made in the application of ML models in the field of

FH diseases; (2) Advantages, challenges and prospects of ML

model applications.
2. Methods

Relevant literature was searched through PubMed and Web of

Science databases using the following search terms: “familial

hypercholesterolemia,” “artificial intelligence,” and “machine

learning.” We searched for articles prior to 2023.03 and selected

only original research articles, excluding reviews, case reports,

etc. References of relevant literature were also reviewed. Two

independent evaluators reviewed the full text of the literature

based on the following inclusion criteria: (1) The study

population was patients with FH; (2) The results contain metrics

for model performance, such as accuracy, sensitivity, specificity,

and AUC etc.; (3) Comparisons of the performance of the ML

models were made. Articles that did not address FH or use ML

methods were excluded. The same two evaluators extracted study

characteristics from the included articles, such as first author’s

name, age, study purpose, data source, sample size, algorithm

type, and model performance metrics. Disagreements between

evaluators were resolved through discussion. Selected literature

was downloaded and merged into Endnote software (https://

endnote.com/), removing duplicate papers.
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3. Results

Thirty-one articles were identified based on our search strategy;

article types and abstracts were screened for fit with key themes.

Finally, a total of 18 papers were selected after confirmation of

inclusion and exclusion criteria. All studies were categorized into

three categories based on the type of application of ML to FH

disease: screening, diagnosis, and risk assessment/other

categories. Most of the studies (n = 13) focused on screening and

diagnosis of FH. We will characterize the application of ML

models according to this classification separately.
3.1. ML applied to the screening of FH

Traditional FH screening mainly relies on plasma lipid

screening for specific high-risk populations, such as patients with

early-onset arteriosclerotic cardiovascular disease (ASCVD) and

those with a family history of FH or hyperlipidemia. Furthermore,

cascade screening through genetic testing is commonly utilized.

Nevertheless, the approach of selective screening has led to a

significant rate of undetected diagnoses (17). In an attempt to

screen for hyperlipidemia among children, a cholesterol assessment

solely dependent on family history overlooked 9.5% of individuals

with dyslipidemia (18). The presently recommended universal

screening approach unavoidably introduces the challenge of being

time-consuming. The application of machine learning in disease

screening can automate the interpretation of results and may

provide a more efficient and time-saving method for FH screening.

In FIND (Flag, Identify, Network, Deliver) FH project, an

electronic health record (EHR) containing medication, diagnostic,

procedure and laboratory examination data is used as the input

to train the model (19, 20). Banda et al. (19) developed a

classifier using EHRs from Stanford Health Care. A random

forest (RF) classifier was trained with data from 197 confirmed

FH patients and 6,590 matched non-case patients. The

probability of FH for each patient output by the classifier was

reviewed, and out of 56 predictions with a probability score of

0.90–0.99, 47 were identified as possible or clear FH after

evaluation by Dutch Lipid Clinical Network (DLCN) and Make

Early Diagnosis to Prevent Early Death (MEDPED) standards.

This model showed good positive predictive value (PPV, 0.85)

and sensitivity (0.68) in an external validation (466 cases, 5,000

non-case patients) from the Geisinger dataset, with an area

under the receiver operating characteristic curve (AUROC) of

0.94, illustrating the excellent performance and practicability of

the RF classifier. However, the different prevalence of FH in the

data and the limited training dataset may have contributed to the

differences in the classifier performance and certain limitations.

In another FIND FH project, Myers et al. (20) used larger

health care data to build a stochastic classifier model. In this

work, the model was trained with data from 939 patients with

confirmed FH and 83,136 individuals presumed to be free of

FH. The results showed a PPV of 0.85, an area under the

precision-recall curve of 0.55 and an AUROC of 0.89. In the
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external validation of the two cohorts, 1,331,759 individuals in a

national dataset (n = 170,416,201) and 866 individuals in the

Oregon Health & Science University dataset (n = 173,733) were

flagged by the model as likely to have FH. Subsequently, FH

experts reviewed 45 and 103 flagged individuals in two cohorts

using four methods (the DLCN, MEDPED, Simon Broome, and

clinical judgment by physicians), respectively. They found that

87% and 77% of the individuals were classified as probable or

definite FH, respectively, demonstrating the accuracy and

efficiency of the model. In an observational study, Sheth et al.

prospectively implemented the FIND FH model to screen for FH

(21). Based on EHRs from the University of Pennsylvania

Healthcare System (n = 1,607,606), there were 8,614 patients with

a FIND FH score >0.2, suggesting possible FH. Finally, 46 of 153

(30%) were diagnosed with FH, 31 of whom were newly

diagnosed through either a physician clinical assessment, clinical

diagnosis criteria or genetic testing. Although there is sometimes

a significant gap between the low diagnostic rate in validation

and the high predictability of FIND FH project, relying on this

model to target screening for highly likely FH patients can

significantly reduce misdiagnose rate of FH (Table 1).

In line with EHR, machine learning models built on basic lipid

data training can also be applied to disease screening. Hesse et al.

(22) used the primary lipid profile data [Total Cholesterol (TC),

High-density lipoprotein cholesterol, LDL-C and Triglycerides]

from the laboratory information systems (n = 555, 68% White

individuals, 26% Indian individuals, and 3.2% Black African

individuals) to create an ML model that combined logistic

regression (LR), deep learning, and RF classification algorithms.

In this study, patients with blood lipid levels exceeding LDL-C

cutoff (4.5 mmol/L) and a model labeled probability of disease

greater than 60% were identified as likely or clear FH. This

model was trained on 70% of the internal data sets, and

outperformed the LDL-C threshold in both the 30% internal

validation set test (AUROC 0.754 vs. 0.682) and the external

validation (AUROC 0.711 vs. 0.642) of the Groote Schuur

Hospital database (n = 1,376; FH prevalence = 64%), showing

better performance and accuracy. In addition, the accuracy and F

score of the model were higher in the medium and low

prevalence cases with AUROC curve values of 0.801 and 0.856,

respectively (22). Therefore, based on simple lipid spectrometry

data, the ML model still accurately identifies FH patients and has

better screening performance than the LDL-C cutoff value.

Regardless of the variables considered, the combinatorial

nature of variable selection in ML model construction brings

about model diversity. Changes in LDL-C levels in patients with

FH can be attributed to either a single pathogenic genetic variant

or a combination of multiple variants. The polygenic score (PGS)

encompasses genetic variation information and has the capability

to predict LDL-C levels. Severe polygenic hypercholesterolemia

patients exhibit elevated PGS values (23). Serving as a valuable

adjunct to FH sequencing techniques, PGS enables differentiation

between monogenic FH and non-monogenic hyperlipidemia (24).

Specifically, the frequency of polygenic anomalies is notably

greater among adult FH patients when contrasted with pediatric

patients. Consequently, leveraging PGS data could enhance the
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accuracy of identifying these individuals (25). Nevertheless, the

integration of PGS data into clinical practice is not yet a

commonplace occurrence. In Gratton et al.’s study, PGS of LDL-C

was included as a predictor variable for the first time (26). Cohort

data were obtained from the UK Biobank and included 139,779

(488 FH variant carriers and 139,291 non-carriers) participants of

white ancestry who had undergone whole-genome sequencing.

Two (14 and 9 variables, respectively) multivariate ML models

were constructed based on a least absolute shrinkage and selection

operator (LASSO) regression algorithm. The former, which

retained LDL-C PGS and other variables such as statins, lipid data

and clinical information, obtained AUCs of 0.78 on the training set

(80% of the data set) and 0.77 on the test set (20% of the data set),

respectively. The latter obtained an AUC of 0.76 on the test set. In

tests to predict pathogenic variants of FH, the LASSO with PGS

model still performed well in predicting pathogenic variants of

APOB (AUC= 0.81) and LDLR (AUC= 0.76). In a screening

assessment of 100,000 individuals, this model (threshold = 0.6%)

recommended 18% fewer genetic tests compared to the LDL-C and

statin use model (12,033 vs. 14,700). Overall, this multivariate ML

model for detecting FH variant carriers outperforms the common

LDL-C-based model and may reduce the burden of gene

sequencing in future FH screening efforts.

Finally, an ML model can also rely on data obtained from corneal

arcus detection to achieve FH screening. The presence of corneal

arcus (CA) often indicates lipid abnormalities and provides strong

physical evidence for screening patients at high risk for FH (27). In

a study of early-onset CAD with CAs, potential FH patients had a

CA incidence of 55.31%, which was as high as 90% in confirmed

patients, reflecting the close relationship between the occurrence of

CA and FH (28). Traditional methods of identifying CA rely on

the interpretation of iris images by a medical professional, which is

time-consuming and subject to interpretation discrepancies (29).

To this end, Kocejko et al. (30) designed a mobile application

based on a convolutional neural network (CNN) model to identify

CA. The training data consisted of 3,900 iris images of various

stages of CAs and iris images without CAs, mainly from the

University Clinical Centre Gdansk. The authors trained and tested

three different CNN models and further tested them separately

with black and white masked datasets. When using a dataset

simulating a “real life” scenario, an accuracy of 0.88 and an F1-

score of 0.86 were obtained with a model assessed with white

masked images, with better results than those with black masks.

This application provides a new, faster and more accurate way to

identify CAs. In this way, the screening of FH could benefit from

the screening of clinical features.
3.2. ML applied to the diagnosis of FH

There are approximately 20 million patients with FH worldwide,

90% of whom are underdiagnosed, and untimely and inadequate

diagnosis seriously affects the prognosis of the disease (31). There

are no uniform criteria for the diagnosis of FH, and the most

commonly used criteria in clinical practice are the DLCN criteria

(9, 32) and the Simon Broome criteria (33). However, these
frontiersin.org
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TABLE 1 Studies of different algorithm models in FH.

Study Objectives Data sources Age (Mean ± SD/
Range)

Sample
size

Algorithm/
software

ML model
performance

J. M. Banda et al.
(19)

Detect FH using Stanford
Health Care’s EHR

Stanford Health Care FH: Female: 47.8 ±
15.1, Male: 44.9 ± 13.9
Non-FH: Female:
50.4 ± 16.1, Male:
49.9 ± 14.2

12,253
patients

RF Internal AUC 0.94, F1 Score
0.81, external AUC 0.94, F1
Score 0.75

K. D. Myers et al.
(20)

Early diagnosis FH using
EHR

Stanford University,
University of Pennsylvania,
Geisinger Medical Center,
and Ohio State University

Training dataset: 35–79
external validation
datasets: 30–76

170,674,009
patients

RF AUC 0.89, PPV 0.85,
sensitivity 0.45

S. Sheth et al. (21) Detect FH using EHR University of Pennsylvania
Healthcare System

<75 8,614 patients RF 46 (30%) were diagnosed
with 31 were newly
diagnosed

R. Hesse et al.
(22)

Detect FH using basic
lipid profile data

Laboratory information
systems

Internal data set:
Training data: FH+:
46 ± 17), FH−:50 ± 15
testing data: FH+: 47 ±
17), FH−:47 ± 15
external data set:
High prevalence: FH+:
43 ± 13, FH−: 52 ± 12

6,851 patients LR + DLM + RF Internal AUC, external high
prevalence AUC ML: AUC
0.754, AUC 0.711
LDL-C cut-off: AUC 0.682,
AUC 0.642
DLCN: AUC 0.755, AUC
0.705

J. Gratton et al.
(26)

Screening for FH variant
carriers

The UK Biobank 51–63 139,779
participants

Regression Internal AUC 0.78, external
AUC 0.77,

T. Kocejko et al.
(30)

Screening against
potential FH by presence
of CA

The National Centre of FH
in Gdansk

27–58 3,900 images CNN (VGG, ResNet
and Inception)

Accuracy 0.88, F1 score 0.86

J. Albuquerque
et al. (35)

Diagnosis FH The Portuguese FH study Medicated patients:
FH: 47.3 ± 14.8, non-
FH: 48.2 ± 13.0
non-medicated
patients:
FH: 33.7 ± 12.2, non-
FH: 39.7 ± 10.8

451
individuals

LR, RF, XGB, NB LR AUROC 0.84, RF
AUROC 0.82, XGB AUC
0.82,
NB AUC 0.81

J. Besseling et al.
(36)

Predict FH causing
mutation

The Dutch FH screening
programme

HeFH patients: 38.1 ±
20.6, unaffected
relatives: 43.1 ± 20

67,309
individuals

LR Internal AUC 0.854, external
AUC 0.954

S. F. Weng et al.
(37)

Identifying patients with
highest probability of FH

CPRD in the UK Derivation cohort:
men: 49 ± 15.9,
women: 50 ± 17.4
Validation cohort:
men: 49 ± 15.8,
women: 50 ± 17.4

2,975,281
patients

FAMCAT, LR AUC 0.860, sensitivity 0.70,
specificity 0.88

R. K. Akyea et al.
(38)

Assessed performance of
machine-learning
approaches for
enhancing detection of
FH

CPRD in the UK >16 4,027,775
individuals

GBM, RF, ensemble
learning, LR, deep
learning

GBM AUC 0.892, RF AUC
0.891, ensemble AUC 0.890,
LR AUC 0.812 deep learning
0.892

K. E. Niehaus
et al. (39)

Identifying patients that
may have FH

The Stanford Translation
Research Integrated
Database

/ 1,013 patients RF, LR RF AUCROC 0.905, AUPRC
0.294
LR AUCROC 0.822, AUPRC
0.227

A. Pina et al. (41) Diagnosis FH Lipid clinics in Gothenburg
(Sweden) and Milan (Italy)

Gothenburg: 38–60
Milan: 28–55

612 patients GBM, NN, CT Internal AUC: GBM 0.83,
NN 0.83, CT 0.79
External AUC: GBM 0.78,
NN 0.76, CT 0.70

A. Larrea-Sebal
et al. (42)

Predicting the activity of
missense LDLr
mutations.

The ClinVar database / 744 LDLr
variants

MLb-LDLr AUROC 0.932

L. Wang et al.
(43)

FH risk assess Peking Union Medical
College Hospital

63.02 ± 11.44 5,597 patients XGB + RF + SVM +
BPANN

AUC _class [94.85 ± 0.47],
AUC _prob [98.66 ± 0.27]

L. F. Reeskamp
et al. (44)

Assess association
between altered DNA
Methylation and FH

Academic Medical Center in
Amsterdam

FH mutation positive:
38.1 ± 12.0
FH mutation negative:
50.7 ± 12.3

136 patients GBM AUC 0.80 ± 0.17

(Continued)
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TABLE 1 Continued

Study Objectives Data sources Age (Mean ± SD/
Range)

Sample
size

Algorithm/
software

ML model
performance

A. Nemeth et al.
(45)

Assess the associations of
serum Lp(a) levels and
ASCVD in FH

University of Debrecen
Clinical Center’s hospital
information system

Non-FH: 22.2–59.0,
FH: 39.3–59.7

590,500
patients

MLP + gradient
boosting + SVM +
binary linear
regression

\

AUC, area under the curve; AUROC, area under the receiver operating characteristic curve; AUPRC, area under the precision-recall curve; ASCVD, arteriosclerotic

cardiovascular disease; BPANN, back-propagation artificial neural network; CA, corneal arcus; CNN, convolutional neural networks; CPRD, clinical practice research data

link; CT, classification tree; DLCN, Dutch lipid clinic network; DLM, deep learning model; EHR, electronic health record; FAMCAT, familial hypercholesterolaemia case

ascertainment tool; GBM, gradient boosting machine; LR, logistic regression; LDLr, low-density lipoprotein receptor; MLb-LDLr, machine learning–based LDLr predictive

software; Lp(a), lipoprotein (a); MLP, multilayer perceptron; NB, naive bayes; NN, neural network; PPV, positive predictive value; RF, random forest; SVM, support vector

machine; XGB, extreme gradient boosting.

Luo et al. 10.3389/fcvm.2023.1237258
criteria have several limitations, such as an imbalance of high

sensitivity and low PPV, and the absence of information such as

clinical history and family history makes diagnosis difficult. The

gold standard for the diagnosis of FH is genetic testing (34).

However, due to the high cost and lack of reliable evaluation of

whether a new mutation is pathogenic, it cannot be widely

promoted, especially in low-income countries. Therefore, it is

necessary to improve existing diagnostic methods or use powerful

auxiliary diagnostic tools to achieve more reliable diagnosis for FH.

As demonstrated in the previous FINDFH study (22), the ML

models have recognition performance comparable to DLCN

criteria in internal validation (n = 166, AUROC 0.754 vs. 0.755)

and external validation of high prevalence (64%) (n = 1,376,

AUROC 0.711 vs. 0.705), suggesting that ML models can replace

clinical criteria and provide new insights for future FH diagnostics.

However, different algorithmic models exhibit performance

differences in identifying FH, which reflects the importance of

algorithmic model selection when developing alternative diagnostic

procedures (35). In previous studies, the LR model performed well

in identifying FH cases (AUROC >0.8) (36, 37), but the RF model

performed better in the studies of Akyea et al. (38) (0.89 vs. 0.81)

and Niehaus et al. (39) (0.905 vs. 0.822). Recently, Albuquerque

et al. (35) combined different algorithms (naive Bayes classifier,

LR, RF and extreme gradient boosting) with the synthetic minority

oversampling technique (SMOTE) or maximizing Youden index

(YI) and performed comparative analysis. The sample for this

study was derived from the Portuguese FH study. Serum TC and

LDL-c values were used as the primary included variables, with

other laboratory tests, biological and clinical information as

candidate predictor variables. Data from the 451 individuals in the

model dataset included 334 medicated patients (n = 111, molecular

diagnosis positive) and 117 nonmedicated patients (n = 35,

molecular diagnosis positive). The results showed that the LR

model performed best (0.84 AUROC and 0.71 Area Under the

Precision-Recall Curve) regardless of the data processing technique

used to address the classification imbalance problem, and the

performance was maintained. The accuracy, G-mean, and F1

scores of all classification methods were higher than those of the

Simon Broome criterion, representing higher classification

efficiency and more balanced recognition capabilities (35). The

superiority of SMOTE for model interpretation makes its

combination with the LR model more concise, and it is

recommended for FH identification. However, more studies that
Frontiers in Cardiovascular Medicine 05
compare and improve ML-based automatic diagnosis methods and

apply reasonable data processing techniques to improve the

recognition level of FH are needed (40).

ML models can also be applied to predict pathogenic mutations

in FH to provide a “virtual” genetic diagnosis. Pina et al. (41)

used three machine learning algorithms (classification tree (CT),

gradient boosting machine (GBM), and neural network (NN)) to

predict the presence of FH-causing mutations in the Gothenburg

cohort (n = 248,111 mutation-positive) and the Milan cohort (n =

364 with 307 mutation-positive). With an internal test of the

Gothenburg cohort (N = 74), NN achieved the best performance,

with a mean AUROC of 0.83. With an external test of the Milan

cohort (N = 364), GBM performed best, with a mean AUROC of

0.779. In addition, in the internal cohort, NN and GBM have PPV

and NPV greater than 0.75. In the external cohort, NPV is lower

for all algorithms (cut-off 0.5) and Dutch Lipid Score (>6 points).In

both tests, NN and GBM performed comparably and better than

CT overall, and different algorithms performed better than DLCN

standard scores (average AUROCs of 0.683 and 0.64 for the

external and internal tests). Collectively, the algorithmic model

showed better expressiveness than Dutch Lipid Score in detecting

gene mutations. In another study, Larrea-Sebal et al. (42) developed

an ML model-based software called ML-based LDL receptor

software (MLb-LDLr) for predicting missense LDLr mutations of

pathogenicity. In this study, data for training (499 pathogenic and

54 benign variants) and validation (166 pathogenic and 26 benign

variants) were obtained from the ClinVar database, and the model

prediction accuracy exceeded 90% for both pathogenic and benign

variants during training and validation. When validated using all

missense variants from the ClinVar database (n = 744), 60% of the

variants were able to be identified by the Mlb-LDLr optimized

through Excel Solver Evolutionary algorithm strategy, and an

AUROC of 0.932 was obtained. The accuracy of Mlb-LDLr was

ultimately validated by functional prediction of 13 undetermined

LDLR variants in ClinVar. The software can achieve good accuracy

and excellent balance in detecting pathogenic (72%, n = 11) and

benign variants (50%, n = 2), illustrating that it can effectively help

predict known pathogenicity in FH mutation. With the rapid

development of gene detection technology, a large number of

unknown LDLr variants have been detected and discovered, and a

novel ML based predictive model software for predicting the

pathogenicity of LDLr variants can be used as a practical auxiliary

tool to effectively help clinicians in the diagnosis of FH.
frontiersin.org

https://doi.org/10.3389/fcvm.2023.1237258
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Luo et al. 10.3389/fcvm.2023.1237258
3.3. ML applied to risk assessment of FH and
beyond

Apart from applications in FH screening and diagnosis, ML has

also been used in risk assessment.

Aiming to develop a risk assessment method based on Chinese

patients with ASCVD, Wang L et al. developed and evaluated a

hybrid FH risk assessment tool (HFHRAT), a combination of three

FH risk assessment tools and stacking models (43). To develop this

tool, two risk assessment tools, modified DLCN for China

(mDLCN) criteria and the Taiwan (TW) criteria (Supplementary

Material), had the best performance among the 10 tools (the

mDLCN criteria had a higher sensitivity and specificity of 97.22%

and 92.90%, respectively, and the Taiwan criteria had the highest

specificity of 100%) using the DLCN criteria as the reference (44,

45). The selected criteria as well as the DLCN criteria were

combined with a voting strategy to generate a novel tool, and the

predictor setting dataset was divided by the hybrid result (HYR)

into 1,112 high-risk and 4,485 low-risk participants. In a further

development of this tool, nine variables and HYR were used, and

the stacking models had the best performance with AUC_class

[94.85 ± 0.47] and AUC_prob [98.66 ± 0.27] (40). In the

interpretation of HFHRAT, it was suggested from the individual

conditional expectation (ICE) and partial dependence plot (PDP)

that individuals aged <75 years with LDL-c >4 mmol/L were more

likely to exhibit FH. In addition, comparing the predictive

characteristics of the five tools, HFHRTA could adjust the position

of the median of the data, resulting in a lower false negative rate

than existing tools, indicating that this hybrid tool has a higher

ability to predict high-risk FH patients (43). The research and

improvement of such risk assessment tools will also be able to play

a role in the screening and diagnosis of FH, effectively improving

the prognosis of the disease.

In addition, ML was used to assess the relationship between FH

and other risk factors, such as altered DNA methylation and serum

Lp(a) levels (46, 47). In this study, data from DNA methylation

measurements were analyzed with linear regression models and

gradient boosting machine learning in two steps. The gradient

boosting model had an average AUC of 0.80 ± 0.17 in 50 repeat

tests of distinguishing methylation differences in FH mutation-

negative and FH mutation-positive patients (46). In another

study, ML models were trained to identify FH patients in the

Hungarian population, and it was found that serum Lp(a) levels

and the frequency of atherosclerotic complications were much

higher in FH patients, but there were no significant associations

between serum Lp(a) levels and atherosclerotic vascular diseases

in the Hungarian FH patient group (47).
4. Challenges

ML applications in FH still face many challenges. The most

pressing issue is the performance stability of the algorithm model.

The algorithm models used have achieved excellent results in

various application scenarios, but the adaptability of the algorithm

models based on different datasets to different populations and
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different disease stages may vary. Therefore, future research should

not only improve the model performance but also consider the

generalizability. Second, most of the training and validation of ML

models mainly rely on clinical data in EHRs and lack relevant

research on image data, biological data and so on. Therefore, it is

necessary to integrate multisource data, increase data volume, and

enhance the credibility of ML models. Finally, there is still a lack of

real external validation and application of algorithm models, and

their popularization in real-world examples is difficult. On the one

hand, this is due to the complexity of ML internal mechanisms that

make it difficult to explain, reducing its credibility. On the other

hand, regulatory and quality control issues encountered in the real

application process also hinder its popularization. Despite these

problems, we believe that with the deepening of follow-up research,

suitable solutions will be found to successfully apply high-

performance algorithm models to real clinical scenarios.

This review has some limitations. First, we conducted a literature

search in only two databases (PubMed and Web of Science) which

may cause bias and omissions in the selection of literature. Future

reviews will expand searches to include larger databases and

multiple language options for more comprehensive and diverse

information. Second, our analysis did not go into the detailed

analysis and comparison of different algorithms and parameters,

and future research may key in finding the optimal algorithm

among different algorithms for FH scenarios. Finally, the process

of data extraction and analysis in our data may be limited by a

number of factors such as the completeness, clarity, and

availability of data from different original studies. In addition,

there are differences in methodological choices for different data

extraction and analysis, which may lead to biased interpretation of

the results. Please suggest strategies for future improvement.
5. Conclusion

To facilitate enhanced comprehension and practical adoption

of the ML approach in managing FH disease, we present a

comprehensive overview of studies that have employed ML for

FH disease applications (Figure 1) and summarize the

characteristics of each studied model in the form of a table

(Table 1). This review allows us to recognize that (1) Data

Integration for Enhanced Outcomes: ML models exhibit the

capacity to effectively amalgamate diverse datasets including

EHR, lipid profiles, PGS, CA results, and genetic test reports.

This integration augments the accuracy of FH screening,

diagnosis, and risk assessment processes; (2) Comparative

Superiority of ML Models: Emerging research consistently

showcases the potential of ML models to either match or

surpass conventional clinical approaches founded on traditional

criteria and LDL-C thresholds; (3) Influential Performance

Factors: The performance of these models hinges upon factors

such as the consideration of variables, sample size, algorithm

selection, and utilization of distinct data-processing

methodologies.; (4) Balancing Advantages and Challenges:

While ML-driven disease management holds promise and
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FIGURE 1

Applications of machine learning in FH.
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substantial applicability, its effective execution presently grapples

with noteworthy challenges..

Overall, the strategy of constructing ML models provides new

ideas for solving important disease problems (48). In addition,

with the continuous development of ML, better algorithmic

models combined with mature data processing techniques will

gradually eliminate the defects of the models themselves and

further improve the model performance. At the same time, the

“black box” problem caused by the internal complexity of ML

algorithms can be addressed, and the trustworthiness of these

applications to solve medical problems can be improved so that

ML models can be more widely used. ML models will not be

limited to integrating large volumes and multidimensional data

such as clinical, genetic, and laboratory data to aid in disease

screening and diagnosis, but will also penetrate the disease practice

areas in a variety of forms. AI and ML will be able to help

improve the quality of experiments and speed up the process of

clinical trials, as well as simulate the outcome of treatments by

intelligently generating “patients” in order to improve drug

development and treatment of FH diseases (49). Recently, a chat

tool named chat generative pretrained transformer (Chat-GPT),

which is based on natural language models, has been developed to

integrate rich medical data to provide “complete and accurate”

medical information in medical queries (50). In the future, there

may be more powerful medical assistant robots, which can not

only play the role of teachers in medical education, but also create

realistic simulation for different patient encounters to provide

professional disease guidance (49). In conclusion, the advancing

capabilities of AI and ML are poised to empower healthcare
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professionals through collaborative engagement. This synergy not

only enhances the proficiency of healthcare practitioners but also

facilitates more accessible human-to-human interactions. By

fostering an interactive collaboration between computer scientists,

clinicians, and patients, this model holds the potential to

effectively tackle the health challenges encountered by FH patients.
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