2,016 research outputs found

    Analytic Confidence Level Calculations using the Likelihood Ratio and Fourier Transform

    Get PDF
    The interpretation of new particle search results involves a confidence level calculation on either the discovery hypothesis or the background-only ("null") hypothesis. A typical approach uses toy Monte Carlo experiments to build an expected experiment estimator distribution against which an observed experiment's estimator may be compared. In this note, a new approach is presented which calculates analytically the experiment estimator distribution via a Fourier transform, using the likelihood ratio as an ordering estimator. The analytic approach enjoys an enormous speed advantage over the toy Monte Carlo method, making it possible to quickly and precisely calculate confidence level results.Comment: 11 pages, 2 figure

    RISE-Based Integrated Motion Control of Autonomous Ground Vehicles With Asymptotic Prescribed Performance

    Get PDF
    This article investigates the integrated lane-keeping and roll control for autonomous ground vehicles (AGVs) considering the transient performance and system disturbances. The robust integral of the sign of error (RISE) control strategy is proposed to achieve the lane-keeping control purpose with rollover prevention, by guaranteeing the asymptotic stability of the closed-loop system, attenuating systematic disturbances, and maintaining the controlled states within the prescribed performance boundaries. Three contributions have been made in this article: 1) a new prescribed performance function (PPF) that does not require accurate initial errors is proposed to guarantee the tracking errors restricted within the predefined asymptotic boundaries; 2) a modified neural network (NN) estimator which requires fewer adaptively updated parameters is proposed to approximate the unknown vertical dynamics; and 3) the improved RISE control based on PPF is proposed to achieve the integrated control objective, which analytically guarantees both the controller continuity and closed-loop system asymptotic stability by integrating the signum error function. The overall system stability is proved with the Lyapunov function. The controller effectiveness and robustness are finally verified by comparative simulations using two representative driving maneuvers, based on the high-fidelity CarSim-Simulink simulation

    Tungsten disulfide-gold nanohole hybrid metasurfaces for nonlinear metalens in the visible region

    Full text link
    Recently, nonlinear hybrid metasurface comes into an attractive new concept in the research of nanophotonics and nanotechnology. It is composed of semiconductors with an intrinsically large nonlinear susceptibility and traditional plasmonic metasurfaces, offering opportunities for efficiently generating and manipulating nonlinear optical responses. A high second-harmonic generation (SHG) conversion efficiency has been demonstrated in the mid-infrared region by using multi-quantum-well (MQW) based plasmonic metasurfaces. However, it has yet to be demonstrated in the visible region. Here we present a new type of nonlinear hybrid metasurfaces for the visible region, which consists of a single layer of tungsten disulfide (WS2) and a phased gold nanohole array. The results indicate that a large SHG susceptibility of ~0.1 nm/V at 810 nm is achieved, which is 2~3 orders of magnitude larger than that of typical plasmonic metasurfaces. Nonlinear metalenses with the focal lengths of 30 {\mu}m, 50 {\mu}m and 100 {\mu}m are demonstrated experimentally, providing a direct evidence for both generating and manipulating SH signals based on the nonlinear hybrid metasurfaces. It shows great potential applications in designing of integrated, ultra-thin, compacted and efficient nonlinear optical devices, such as frequency converters, nonlinear holography and generation of nonlinear optical vortex beam

    GC-MS analysis of essential oil from Anethum graveolens L (dill) seeds extracted by supercritical carbon dioxide

    Get PDF
    Purpose: To conduct gas chromatography-mass spectrometric (GC-MS) analysis of the chemical compositions of dill seed essential oil (DSEO) obtained by supercritical CO2. Methods: The impact on extraction yield were examined by single factor test, the particle size of dill seed, extraction temperature, time, pressure, as well as CO2 flux. The best extraction conditions were obtained by an orthogonal test. The chemical configurations of essential oil were examined by GC-MS analysis. Results: The optimal extraction conditions included an extraction time of 120 min, particle size of 60 mesh, CO2 flow of 25 L/h, temperature of 40oC, and pressure of 20 MPa. Under these conditions, the yield of essential oil was 6.7 %. Out of 38 recognized compounds, the main ones were D-carvone (40.36 %), D-limonene (19.31 %), apiol (17.50 %), α-pinene (6.43 %), 9-octadecenoic acid (9.00 %) as well as 9,12-octadecadienoic acid (2.44 %). Conclusion: A total of 38 constituents of the essential oil obtained by supercritical CO2 were identified. The findings may provide a theoretical basis for comprehensive utilization of dill seed essential oil (DSEO) from China

    One-to-Many Semantic Communication Systems: Design, Implementation, Performance Evaluation

    Full text link
    Semantic communication in the 6G era has been deemed a promising communication paradigm to break through the bottleneck of traditional communications. However, its applications for the multi-user scenario, especially the broadcasting case, remain under-explored. To effectively exploit the benefits enabled by semantic communication, in this paper, we propose a one-to-many semantic communication system. Specifically, we propose a deep neural network (DNN) enabled semantic communication system called MR\_DeepSC. By leveraging semantic features for different users, a semantic recognizer based on the pre-trained model, i.e., DistilBERT, is built to distinguish different users. Furthermore, the transfer learning is adopted to speed up the training of new receiver networks. Simulation results demonstrate that the proposed MR\_DeepSC can achieve the best performance in terms of BLEU score than the other benchmarks under different channel conditions, especially in the low signal-to-noise ratio (SNR) regime.Comment: 5 pages, 6 figures, published to C
    • …
    corecore