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Abstract

The interpretation of new particle search results involves a confidence level
calculation on either the discovery hypothesis or the background-only (“null™)
hypothesis. A typical approach uses toy Monte Carlo experiments to build
an expected experiment estimator distribution against which an observed ex-
periment’s estimator may be compared. In this note, a new approach is pre-
sented which cal culates analytically the experiment estimator distribution viaa
Fourier transform, using the likelihood ratio as an ordering estimator. The an-
alytic approach enjoys an enormous speed advantage over the toy Monte Carlo
method, making it possible to quickly and precisely calculate confidence level
results.

1. INTRODUCTION

A consistently recurring topic in experimental physics has been the interpretation and combination of
results from searches for new particles. The fundamental task is to interpret the collected dataset in
the context of two complementary hypotheses. The first hypothesis — the null hypothesis — is that the
dataset is compatible with non-signal background production alone, and the second is that the dataset is
compatible with the sum of signal and background production. In most cases, the search for new particles
proceeds via several parallel searches for final states. The results from all of these subchannels are then
combined to produce afinal resullt.

All existing confidence level calculationsfollow the same general strategy [1, 2, 3]. A test statistic
or estimator is constructed to quantify the “signal-ness’ of area or simulated experiment. Most calcu-
lation methods use an ensemble of toy Monte Carlo experiments to generate the estimator distribution
against which the observed experiment’s estimator is compared. This generation can be rather time-
consuming when the number of toy Monte Carlo experiments is great (as it must be for high precision
calculations) or if the number of signal and background events expected for each experiment is great (as
it isfor the case of searches optimized to use background subtraction).

In this note, we present an improved method for calculating confidence levels in the context of
searches for new particles. Specifically, when the likelihood ratio is used as an estimator, the experiment
estimator distribution may be calculated analytically with the Fourier transform. The most dramatic
advantage of the analytic method over the toy Monte Carlo method is the increase in calculation speed.

2. LIKELIHOOD RATIO ESTIMATOR FOR SEARCHES

Thelikelihood ratio estimator is the ratio of the probahilities of observing an event under the two search
hypotheses. The estimator for asingle experiment is

B =kt (1)

Here £, is the probability density function for signal+background experiments and £, is the
probability density function for background-only experiments. Because the constant factor C' appears
in each event’s estimator, it does not affect the ordering of the estimators. For clarity in this note, the
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constant is chosen to be e®, where s is the expected number of signal events. In practice, not every
event isequally signal-like. Each search may have one or more event variables that discriminate between
signal-like and background-like events. For the general case, the probabilities £, and £, are functions
of the observed events measured variables.

As an example, consider a search using one discriminant variable m, the reconstructed Higgs
mass. The signal and background have different probability density functions in m, defined as fs(m)
and f,(m), respectively. (For searches with more than one discriminant variable, m would be replaced
by avector of discriminant variables 7’.) It is then straightforward to calculate £, and £;, for asingle
event, taking into account the event weighting coming from the discriminant variable:

Lorp e [sf(m) +bfy(m)]

b=y, = e b [bfy(m)]

2)

The likelihood ratio estimator can be shown to maximize the discovery potential and exclusion
potential of asearch for new particles[3].

3. ENSEMBLE ESTIMATOR DISTRIBUTIONSVIA FAST FOURIER TRANSFORM (FFT)

One way to form an estimator for an ensemble of events is to generate a large number of toy Monte
Carlo experiments, each experiment having a number of events generated from a Poisson distribution.
Another way isto compute analytically the probability density function of the ensemble estimator given
the probability density function of the event estimator. The discussion of this section pursues the latter
approach.

The likelihood ratio estimator is a multiplicative estimator. This means the estimator for an en-
semble of eventsisformed by multiplying the individual event estimators. Alternatively, the logarithms
of the estimators may be summed. In the following derivation, ' = In F/, where F isthelikelihood ratio
estimator.

For an experiment with O events observed, the estimator istrivia:

e—(s+b)
= é° = =1 3
F = 0 (4)
po(F) = 6(F), (5)

where po(F') isthe probability density function in F' for experiments with O observed events.

For an experiment with exactly one event, the estimator is, again using the reconstructed Higgs
mass m,

s€ U [sfo(m) +bfy(m)]

B = " 0hmy ©
B sfs(m) + bfy(m)
F = In bfy(m) , (7)

and the probability density functionin F' is defined as p; (F').

For an experiment with exactly two events, the estimators of the two events are multiplied to form
an ensembl e estimator. If the reconstructed Higgs masses of the two events are m; and meo, then

[sfs(m1) + bfy(m)] [sfs(m2) + bfy(m2)]

= ]

"o [bfy(m1)] [bfp(m2)] (8)
- In sfs(my) + bfy(my) N sfs(ma) 4 bfy(ms)

re=d bfp(m1) 1 bfy(ms) (9)
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The probability density function for exactly two particles po(F") issimply the convolution of p; (F') with
itself:

pQ(F) = //p1 F1 (F F1 FQ)dFldFQ (10)
= p(F)® Pl(F) (11)

The generalization to the case of n eventsis straightforward and encouraging:

5 _ ﬂsfs(mi)+bfb(mi)

im1 bfy(mi) 12

Fo= Zl B T &
pulF) = | / H P (Fy)dF] 6 ( Z ) (14)
= p(F)®...0p(F). (15)

n times

Next, the convolution of p;(F') is rendered manageable by an application of the relationship be-
tween the convolution and the Fourier transform.

If A(F') = B(F) ® C(F), thenthe Fourier transforms of A, B, and C' satisfy

A(G) = B(G) - C(G). (16)

This allows the convolution to be expressed as a simple power:

(@) = (@] an

Note this equation holds even for n = 0, since po(G) = 1. For any practical computation, the analytic
Fourier transform may be approximated by a numerical Fast Fourier Transform (FFT).

How does this help to determine p,.4 and p,? The probability density function for an ensemble
estimator with s expected signal and b expected background eventsis

N (eap) (8B
pualF) = 3 e BT () 18)
n=0 ’

where n isthe number of events observed in the experiment. Upon Fourier transformation, this becomes

(@) = Zoe—<s+b>('°";—!w_pn<a> (19)
- —(s (S + b)n — "

_ nz:%e (s+b) - {m(G)] (20)

Psit(G) = e @], (21)

The function p,,(F') may then be recovered by using the inverse transform. In general, this relation,
which holds for any multiplicative estimator, means that the probability density function for an arbitrary
number of expected signal and background events may be calculated analytically once the probability
density function of the estimator is known for a single event.
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Two examples provide practical proof of the principle. For thefirst, assume a hypothetical estima-
tor resultsin a probability density function of simple Gaussian form

1 _(@=m?
pi(F) = —=e™ 27, (22)

o2n

whereo = 0.2 and u = 2.0. For an expected s+b = 20.0, both the FFT method and the toy Monte Carlo
method are used to evolute the event estimator probability density function to an experiment estimator
probability density function. The agreement between the two methods (Fig. 1a) is striking. The higher
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Fig. 1. The experiment estimator probability density functions for a Gaussian event estimator probability function (a) and for
atypical non-Gaussian event estimator (b). The solid lineis calculated with the FFT method, and the dashed lineis calculated
with the toy Monte Carlo method. Error bars associated with the Monte Carlo method are due to limited statistics.

precision of the FFT method is apparent, even when compared to 1 million toy Monte Carlo experiments.
The periodic structure is due to the discontinuous Poisson distribution being convolved with a narrow
event estimator probability function. In particular, the pesk at In £ = 0 corresponds to the probability
that exactly zero events be observed (e~ 5t?) = 2.1 x 10~?). The precision of the toy Monte Carlo
method is limited by the number of Monte Carlo experiments, while the precision of the FFT method is
limited only by computer precision. For the second example, the probability density function of atypical
non-Gaussian estimator is calculated for an experiment with s = 5 and b = 3 expected events (Fig. 1b).
Again, the two methods agree well in regions where the toy Monte Carlo method is useful.

Finally, the obtained experiment estimator probability density function may be used to calculate
confidence levels on the search hypotheses. For example, the final confidence coefficients ¢, and ¢
are simply integrals of the experiment estimator probability density function [4, 5].

4. DISCUSSION ON SYSTEMATIC UNCERTAINTIES

When the likelihood ratio estimator is used as atest statistic, the systematic uncertainty on the confidence
level is due to the uncertainties on numbers of background events expected, the number of signal events
expected, and the shapes of the discriminant variables. Since the shapes are nothing more than the density
of signal and background eventsin the discriminant variable space, we focus only on the uncertainty due
to uncertainties on background and signal numbers.
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Consider one channel having & types of signal events and [ types of background events. The
number of each type of event is denoted by u;, (i = 1,2,...,k 4+ [). Then the Fourier transform of the
experiment estimator’s density function is calculated using the previous results:

m _ er;rll uifp1,:(G)-1] (23)

where p1 ;(G) isthetransformed density function for one event of the ith type. If the uncertaintiesfollow
a Gaussian distribution with a correlated error matrix

Sij = ((wi — (ui)) (uj — (uy))) (24)

between the k& + [ types of events, then the systematic uncertainty on the experiment estimator’s density
function may be calculated analytically as

- k+lu_ ]—_ k41
psys(G) = f . .fezz‘:1 1[p i(G) 1] (%ﬁ) ﬁ
kbl Skl —%(ui—<ui>)5i;1(uj—(uj)) I1 du; (25)

e i=1 j=1

_ i@ @-1]+3 X, [pra(@-1]Si5 o1 (@)-1]

In general, the resolution function can be constructed by combining several Gaussian distributions, so
the systematic uncertainty can be calculated analytically.

5. COMBINING RESULTSFROM SEVERAL SEARCHES

Given the multiplicative properties of the likelihood ratio estimator, the combination of several search
channels proceeds intuitively. The estimator for any combination of eventsis simply the product of the
individual event estimators. Consequently, construction of the estimator probability density function for
the combination of channels parallels the construction of the estimator probability density function for
the combination of eventsin asingle channel. In particular, for a combination with IV search channels:

N q
ps+0(G) = [ rl,(G) (26)
j=1

Gt [A©@)-1] @

Dueto the strictly multiplicative nature of the estimator, this combination method isinternally con-
sistent. No matter how subsets of the combinations are rearranged (i.e., combining channels in different
orders, combining different subsets of data runs), the result of the combination does not change.

6. CONCLUSION

A fast confidence level calculation with a multiplicative estimator makes possible studies that might have
otherwise been too CPU-intensive with the toy MC method. These include studies of improvementsin
the event selections, of various working points, and of systematic errors. A precise calculation aso
makes possible rejection of null hypotheses at the level necessary for discovery.
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Discussion after talk of Jason Nielsen. Chairman: Roger Barlow.

M. Woodroofe

I hope I’'m not making too many comments. The distribution of this sum up to the random Poisson
is sometimes called a compound Poisson distribution. Isthat afamiliar term to you ?

J. Nielsen

Which oneisthis?

M. Woodroofe

A compound Poisson distribution. It's the sum of abunch of independent random variables where
the number of terms in the sum has a Poisson distribution. Those arise, among other places, in the
distribution of insurance claims, where the number of claims is a Poisson and the amount of the claim
isarandom variable. A lot of effort has gone into understanding the distribution of compound Poisson,
much along the lines that you're talking about. You might want to connect what you've done to some of
the earlier work.

Shan Jin

Can this method apply to the unified approach ?

J. Nielsen

Because it uses multiplicative estimator or additive estimator like the log of the estimator that |
used, then it's not going to work if you are ever breaking up the pieces and renormalizing the estimator.
Aslong asthe estimator isamultiplicative estimator thiswill work, but if you are ever using, for example,
the published unified approach, then | don’t think it would work.
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