
    

ANALYTIC CONFIDENCE LEVEL CALCULATIONS USING THE
LIKELIHOOD RATIO AND FOURIER TRANSFORM

H. Hu, J. Nielsen
Department of Physics, University of Wiconsin-Madison, Madison, Wisconsin, USA

Abstract
The interpretation of new particle search results involves a confidence level
calculation on either thediscovery hypothesisor thebackground-only (“null” )
hypothesis. A typical approach uses toy Monte Carlo experiments to build
an expected experiment estimator distribution against which an observed ex-
periment’s estimator may be compared. In this note, a new approach is pre-
sented which calculatesanalytically theexperiment estimator distribution viaa
Fourier transform, using the likelihood ratio as an ordering estimator. The an-
alytic approach enjoysan enormousspeed advantageover thetoy MonteCarlo
method, making it possible to quickly and precisely calculateconfidence level
results.

1. INTRODUCTION

A consistently recurring topic in experimental physics has been the interpretation and combination of
results from searches for new particles. The fundamental task is to interpret the collected dataset in
the context of two complementary hypotheses. The first hypothesis – the null hypothesis – is that the
dataset is compatible with non-signal background production alone, and the second is that the dataset is
compatiblewith thesum of signal and background production. In most cases, thesearch for new particles
proceeds via several parallel searches for final states. The results from all of these subchannels are then
combined to produceafinal result.

All existing confidence level calculations follow thesamegeneral strategy [1, 2, 3]. A test statistic
or estimator is constructed to quantify the “signal-ness” of a real or simulated experiment. Most calcu-
lation methods use an ensemble of toy Monte Carlo experiments to generate the estimator distribution
against which the observed experiment’s estimator is compared. This generation can be rather time-
consuming when the number of toy Monte Carlo experiments is great (as it must be for high precision
calculations) or if thenumber of signal and background eventsexpected for each experiment isgreat (as
it is for thecaseof searches optimized to usebackground subtraction).

In this note, we present an improved method for calculating confidence levels in the context of
searches for new particles. Specifically, when the likelihood ratio isused asan estimator, theexperiment
estimator distribution may be calculated analytically with the Fourier transform. The most dramatic
advantageof theanalytic method over the toy MonteCarlo method is the increase in calculation speed.

2. LIKELIHOOD RATIO ESTIMATOR FOR SEARCHES

The likelihood ratio estimator is the ratio of theprobabilities of observing an event under the two search
hypotheses. Theestimator for asingleexperiment is

���������
	��
�
��� (1)

Here �
�
	�� is the probability density function for signal+background experiments and ��� is the
probability density function for background-only experiments. Because the constant factor

�
appears

in each event’s estimator, it does not affect the ordering of the estimators. For clarity in this note, the
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constant is chosen to be � � , where � is the expected number of signal events. In practice, not every
event isequally signal-like. Each search may haveoneor moreevent variablesthat discriminatebetween
signal-likeand background-likeevents. For thegeneral case, theprobabilities � ��	�� and � � are functions
of theobserved events’ measured variables.

As an example, consider a search using one discriminant variable � , the reconstructed Higgs
mass. The signal and background have different probability density functions in � , defined as � ��� ���
and � � � ��� , respectively. (For searches with more than one discriminant variable, � would be replaced
by a vector of discriminant variables �� � .) It is then straightforward to calculate ���
	�� and ��� for a single
event, taking into account theevent weighting coming from thediscriminant variable:

��� � � ����	�����
� � � ���! 

�
	��#"%$ �&� � � ���('*)�� � � ���,+
� � � $ )�� � � ���-+ � (2)

The likelihood ratio estimator can be shown to maximize the discovery potential and exclusion
potential of asearch for new particles [3].

3. ENSEMBLE ESTIMATOR DISTRIBUTIONS VIA FAST FOURIER TRANSFORM (FFT)

One way to form an estimator for an ensemble of events is to generate a large number of toy Monte
Carlo experiments, each experiment having a number of events generated from a Poisson distribution.
Another way is to compute analytically the probability density function of the ensemble estimator given
the probability density function of the event estimator. The discussion of this section pursues the latter
approach.

The likelihood ratio estimator is a multiplicative estimator. This means the estimator for an en-
semble of events is formed by multiplying the individual event estimators. Alternatively, the logarithms
of theestimatorsmay besummed. In thefollowing derivation, . ��/ 01�

, where
�

is the likelihood ratio
estimator.

For an experiment with 0 events observed, theestimator is trivial:

� � � � � �2 
��	��3"
� � �

��4
(3)

. � 5
(4)687 � .9� � : � .9�#; (5)

where 687 � .9� is theprobability density function in . for experiments with 0 observed events.

For an experiment with exactly one event, the estimator is, again using the reconstructed Higgs
mass � ,

� � � � � �! 
�
	��#" $ �&� ��� ���('*)�� � � ���-+

� � � $ )�� � � ���-+ ; (6)

. � / 0 ��� � � ���('*)�� � � ���
)�� � � ��� ; (7)

and theprobability density function in . is defined as 62< � .=� .
For an experiment with exactly two events, theestimatorsof the two eventsaremultiplied to form

an ensembleestimator. If the reconstructed Higgs masses of the two events are � < and �?> , then

� � $ �&� ��� � < �('*)�� � � � < �,+ $ ��� ��� �@>A�!'*)�� � � �?>B�,+$ )�� � � � < �,+ $ )�� � � � > �,+ (8)

. � / 0 �&� � � � < �('*)�� � � � < �
)�� � � � < � ' / 0 �&� � � � > �('*)�� � � � > �

)�� � � �@>A� � (9)
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Theprobability density function for exactly two particles 6 > � .=� issimply theconvolution of 62< � .9� with
itself:

6 > � .9� � 62< � . < � 62< � .%>A� : � . � . < � .%>B�DC8. < C8.%> (10)
� 6 < � .9�(E 6 < � .9� � (11)

Thegeneralization to thecaseof F events is straightforward and encouraging:

� � G
HJI <

�&� ��� � H �('*)�� � � � H �
)�� � � � H � (12)

. � G
HJI <

/ 0 ��� � � � H �('*)�� � � � H �
)�� � � � H � (13)

6 G � .9�
�

�K�L�
G
HJI <

$ 6 < � . H �DC8. H + : . � G
HJI < . H (14)

� 6!< � .=�!E �L�K� E 6!< � .=�
G�MONQPSRUT

� (15)

Next, the convolution of 62< � .9� is rendered manageable by an application of the relationship be-
tween theconvolution and theFourier transform.

If V � .9� ��W � .=�!E � � .9� , then theFourier transforms of V ,
W

, and
�

satisfy

V �#X � � W �DX �(Y � �DX � � (16)

This allows theconvolution to beexpressed asasimplepower:

6 G �#X �
� 62< �#X � G � (17)

Note this equation holds even for F �Z5
, since 6 7 �DX � �[4

. For any practical computation, the analytic
Fourier transform may beapproximated by anumerical Fast Fourier Transform (FFT).

How does this help to determine 6 ��	�� and 6 � ? The probability density function for an ensemble
estimator with � expected signal and ) expected background events is

6 �
	�� � .9� � \
G I 7

� �! �
	��#" � �]'*)�� G
F_^ 6 G � .9�#; (18)

where F is thenumber of eventsobserved in theexperiment. Upon Fourier transformation, thisbecomes

6 ��	�� �DX � � \
G I 7

� �! �
	��#" � �`'*)�� G
Fa^ 6 G �#X � (19)

� \
G I 7

� �! �
	��#" � �`'*)�� G
Fa^ 6 < �#X � G (20)

6 ��	�� �DX � � �  ��	��3" $ b�c  ed " � < + � (21)

The function 6 �
	�� � .9� may then be recovered by using the inverse transform. In general, this relation,
which holds for any multiplicativeestimator, means that theprobability density function for an arbitrary
number of expected signal and background events may be calculated analytically once the probability
density function of theestimator is known for asingleevent.
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Two examplesprovidepractical proof of theprinciple. For thefirst, assumeahypothetical estima-
tor results in aprobability density function of simpleGaussian form

6 < � .9� �
4

f!g h�i � �kjmlonBp
q
rrJs r ; (22)

where f ��5
� h and t � h �

5
. For an expected �u'v) � h 5 �

5
, both theFFT method and thetoy MonteCarlo

method are used to evolute the event estimator probability density function to an experiment estimator
probability density function. The agreement between the two methods (Fig. 1a) is striking. The higher
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Fig. 1: The experiment estimator probability density functions for a Gaussian event estimator probability function (a) and for

a typical non-Gaussian event estimator (b). The solid line is calculated with the FFT method, and the dashed line is calculated

with the toy MonteCarlo method. Error barsassociated with theMonteCarlo method aredue to limited statistics.

precision of theFFT method isapparent, even when compared to 1 million toy MonteCarlo experiments.
The periodic structure is due to the discontinuous Poisson distribution being convolved with a narrow
event estimator probability function. In particular, the peak at

/ 01�w�x5
corresponds to the probability

that exactly zero events be observed ( ���! �
	��#" � h �
4zy{4A5 �8| ). The precision of the toy Monte Carlo

method is limited by the number of Monte Carlo experiments, while the precision of the FFT method is
limited only by computer precision. For thesecond example, theprobability density function of atypical
non-Gaussian estimator is calculated for an experiment with � ��}

and ) ��~
expected events (Fig. 1b).

Again, the two methodsagreewell in regions where the toy MonteCarlo method is useful.

Finally, the obtained experiment estimator probability density function may be used to calculate
confidence levels on the search hypotheses. For example, the final confidence coefficients � �
	�� and � �
aresimply integrals of theexperiment estimator probability density function [4, 5].

4. DISCUSSION ON SYSTEMATIC UNCERTAINTIES

When thelikelihood ratio estimator isused asatest statistic, thesystematic uncertainty on theconfidence
level is due to the uncertainties on numbers of background events expected, the number of signal events
expected, and theshapesof thediscriminant variables. Sincetheshapesarenothing morethan thedensity
of signal and background events in thediscriminant variablespace, wefocusonly on theuncertainty due
to uncertainties on background and signal numbers.
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Consider one channel having � types of signal events and � types of background events. The
number of each type of event is denoted by � H , �-� ��4 ; h ; �K�L� ;L�1'��-� . Then the Fourier transform of the
experiment estimator’s density function is calculated using theprevious results:

6 �DX � � � ���A���� cK�B� $ b cJ� �  ed " � < + (23)

where 6 <3� H �DX � isthetransformed density function for oneevent of the ���D� type. If theuncertaintiesfollow
aGaussian distribution with acorrelated error matrix

� H�� ��� � � H � � � H�� � � � � � � � ��� � � (24)

between the �9'�� types of events, then the systematic uncertainty on the experiment estimator’s density
function may becalculated analytically as

6 TO�oT �#X �
�

�K�L� � �������� c �B� $ b cU� �  ed " � < + <� >#�
� 	�� <

g �  %�
� �¡������ c �����¢¡� c �

cr  �B� �!£ �B�O¤ "   n
c�Q¢  ��¢ �!£ ��¢#¤ " H CK� H� � �¡������ c £ �B�-¤ $ b cJ� �  ed " � < + 	

cr � � ¢ $ b cU� �  ed " � < +   �m¢ $ b cU� ¢  ed " � < +
(25)

In general, the resolution function can be constructed by combining several Gaussian distributions, so
thesystematic uncertainty can becalculated analytically.

5. COMBINING RESULTS FROM SEVERAL SEARCHES

Given the multiplicative properties of the likelihood ratio estimator, the combination of several search
channels proceeds intuitively. The estimator for any combination of events is simply the product of the
individual event estimators. Consequently, construction of the estimator probability density function for
the combination of channels parallels the construction of the estimator probability density function for
thecombination of events in asinglechannel. In particular, for acombination with ¥ search channels:

6 �
	�� �#X � � ¦
�
I < 6

��
	�� �DX � (26)

� �
§¢�� c  � ¢ 	�� ¢ " b ¢ c  ed " � < (27)

Dueto thestrictly multiplicativenatureof theestimator, thiscombination method isinternally con-
sistent. No matter how subsets of the combinations are rearranged (i.e., combining channels in different
orders, combining different subsets of data runs), the result of thecombination does not change.

6. CONCLUSION

A fast confidencelevel calculation with amultiplicativeestimator makespossiblestudiesthat might have
otherwise been too CPU-intensive with the toy MC method. These include studies of improvements in
the event selections, of various working points, and of systematic errors. A precise calculation also
makes possible rejection of null hypotheses at the level necessary for discovery.
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Discussion after talk of Jason Nielsen. Chairman: Roger Barlow.

M. Woodroofe

I hopeI’m not making too many comments. Thedistribution of thissum up to therandom Poisson
is sometimes called acompound Poisson distribution. Is that a familiar term to you ?

J. Nielsen

Which one is this ?

M. Woodroofe

A compound Poisson distribution. It’s thesum of abunch of independent random variableswhere
the number of terms in the sum has a Poisson distribution. Those arise, among other places, in the
distribution of insurance claims, where the number of claims is a Poisson and the amount of the claim
is a random variable. A lot of effort has gone into understanding the distribution of compound Poisson,
much along the lines that you’re talking about. You might want to connect what you’ve done to some of
theearlier work.

Shan Jin

Can this method apply to theunified approach ?

J. Nielsen

Because it uses multiplicative estimator or additive estimator like the log of the estimator that I
used, then it’s not going to work if you are ever breaking up the pieces and renormalizing the estimator.
Aslong astheestimator isamultiplicativeestimator thiswill work, but if you areever using, for example,
thepublished unified approach, then I don’t think it would work.
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