12 research outputs found

    Chemically induced graphene to diamond transition: a DFT study

    Full text link
    The conversion of graphene into diamond is a new way for preparing ultrathin diamond film without pressure. Herein, we investigated the transformation mechanism of surface-hydrogenated bilayer graphene (SHBG) into surface-hydrogenated single-layer diamond (SHSLD) crystal, inserting fifteen kinds of single metal atoms without any pressure, by using the systematical first-principles calculations. Compared with the configuration without metal atom, SHBG can be transformed into SHSLD spontaneously in thermodynamics under the action of single metal atom, and its formation energy can even decrease from 0.82 eV to -5.79 eV under the action of Hf atom. According to our results, the outer electron orbits and atomic radius of metal atom are two important factors that affect the conversion. For the phase transition to occur, the metal atom needs to have enough empty d orbitals, and the radius of the metal atom is in the range of 0.136-0.159 nm. Through further analysis, we find that the p orbitals of carbon atoms and d orbital of metal atom in SHBG will be strongly hybridized, thereby promoting the conversion. The results supply important significance to experimentally prepare diamond without pressure through hydrogenated graphene

    YQ36: A Novel Bisindolylmaleimide Analogue Induces KB/VCR Cell Death

    Get PDF
    Overexpression of multidrug resistance proteins P-glycoprotein (P-gp, MDR1) causes resistance of the tumor cells against a variety of chemotherapeutic agents. 3-(1-methyl-1H-indol-3-yl)-1-phenyl-4-(1-(3-(piperidin-1-yl)propyl)-1H-pyrazolo[3,4-b]pyridine-3-yl)-1H-pyrrole-2,5-dione (YQ36) is a novel analogue of bisindolylmaleimide, which has been reported to overcome multidrug resistance. Here, we dedicated to investigate the anticancer activity of YQ36 on KB/VCR cells. The results revealed that YQ36 exhibited great antiproliferative activity on three parental cell lines and MDR1 overexpressed cell lines. Moreover, the hypersensitivity of YQ36 was confirmed on the base of great apoptosis induction and unaltered intracellular drug accumulation in KB/VCR cells. Further results suggested that YQ36 could not be considered as a substrate of P-gp, which contributed to its successfully escaping from the efflux mediated by P-gp. Interestingly, we observed that YQ36 could accumulate in nucleus and induce DNA damage. YQ36 could also induce the activation of caspase-3, imposing effects on the mitochondrial function. Collectively, our data demonstrated that YQ36 exhibited potent activities against MDR cells, inducing DNA damage and triggering subsequent apoptosis via mitochondrial pathway

    Multi-agent robotic system (MARS) for UAV-UGV path planning and automatic sensory data collection in cluttered environments

    No full text
    There has been growing interest in increasing the application of robotic and automation technologies for building indoor inspection. However, much previous research on indoor robotic applications was limited to a single type of unmanned aerial/ground vehicle (UAV/UGV), each of which has certain limitations and constraints. Besides, the robotic systems suffer from inefficient control within cluttered indoor environments containing many obstacles. This paper presents a multi-agent robotic system (MARS) for automatic UAV-UGV path planning and indoor navigation to automate sensory data collection. The proposed MARS consists of a new system architecture that defines the attributes and data requirements for UAV and UGV indoor path planning. To improve indoor navigation in cluttered environments, an enhanced shunting short-term memory model is established to optimize the pathfinding of UAV/UGV for data collection. Assessment of indoor navigation is conducted with a simulation-based approach and LiDAR SLAM. A mediating agent, which harnesses a control algorithm and information exchange mechanism, is proposed to interoperate UAV and UGV for automated data collection. The proposed new MARS is examined in experiments, in which a single UAV, dual UAVs, and combined UAV-UGV are tested in a research laboratory. The result indicates that the MARS can support automated path planning and indoor navigation for 2D image and 3D point cloud data collection

    Transcriptional profiling unveils type I and II interferon networks in blood and tissues across diseases

    Get PDF
    Understanding how immune challenges elicit different responses is critical for diagnosing and deciphering immune regulation. Using a modular strategy to interpret the complex transcriptional host response in mouse models of infection and inflammation, we show a breadth of immune responses in the lung. Lung immune signatures are dominated by either IFN-γ and IFN-inducible, IL-17-induced neutrophil- or allergy-associated gene expression. Type I IFN and IFN-γ-inducible, but not IL-17- or allergy-associated signatures, are preserved in the blood. While IL-17-associated genes identified in lung are detected in blood, the allergy signature is only detectable in blood CD4+ effector cells. Type I IFN-inducible genes are abrogated in the absence of IFN-γ signaling and decrease in the absence of IFNAR signaling, both independently contributing to the regulation of granulocyte responses and pathology during Toxoplasma gondii infection. Our framework provides an ideal tool for comparative analyses of transcriptional signatures contributing to protection or pathogenesis in disease

    Enteral nutrition feeding in Chinese intensive care units: a cross-sectional study involving 116 hospitals

    No full text
    Abstract Background There is a lack of large-scale epidemiological data on the clinical practice of enteral nutrition (EN) feeding in China. This study aimed to provide such data on Chinese hospitals and to investigate factors associated with EN delivery. Methods This cross-sectional study was launched in 118 intensive care units (ICUs) of 116 mainland hospitals and conducted on April 26, 2017. At 00:00 on April 26, all patients in these ICUs were included. Demographic and clinical variables of patients on April 25 were obtained. The dates of hospitalization, ICU admission and nutrition initiation were reviewed. The outcome status 28 days after the day of investigation was obtained. Results A total of 1953 patients were included for analysis, including 1483 survivors and 312 nonsurvivors. The median study day was day 7 (IQR 2–19 days) after ICU entry. The proportions of subjects starting EN within 24, 48 and 72 h after ICU entry was 24.8% (84/352), 32.7% (150/459) and 40.0% (200/541), respectively. The proportion of subjects receiving > 80% estimated energy target within 24, 48, 72 h and 7 days after ICU entry was 10.5% (37/352), 10.9% (50/459), 11.8% (64/541) and 17.8% (162/910), respectively. Using acute gastrointestinal injury (AGI) 1 as the reference in a Cox model, patients with AGI 2–3 were associated with reduced likelihood of EN initiation (HR 0.46, 95% CI 0.353–0.599; p < 0.001). AGI 4 was significantly associated with lower hazard of EN administration (HR 0.056; 95% CI 0.008–0.398; p = 0.004). In a linear regression model, greater Sequential Organ Failure Assessment scores (coefficient – 0.002, 95% CI – 0.008 to − 0.001; p = 0.024) and male gender (coefficient – 0.144, 95% CI – 0.203 to − 0.085; p < 0.001) were found to be associated with lower EN proportion. As compared with AGI 1, AGI 2–3 was associated with lower EN proportion (coefficient – 0.206, 95% CI – 0.273 to − 0.139; p < 0.001). Conclusions The study showed that EN delivery was suboptimal in Chinese ICUs. More attention should be paid to EN use in the early days after ICU admission
    corecore