4,565 research outputs found
Establishing consensus of position-specific predictors for elite youth soccer in England
Purpose: To construct a valid and reliable methodology for the development of position-specific predictors deemed appropriate for talent identification purposes within elite youth soccer in England.
Method: N = 10 panel experts participated in a three-step modified e-Delphi poll to generate consensus on a series of generic youth player attributes. A follow-up electronic survey completed by coaches, scouts and recruitment staff (n = 99) ranked these attributes to specific player-positions.
Results: A final list of 44 player attributes found consensus using the three-step modified e-Delphi poll. Findings indicated that player-positional attributes considered most important in the youth phase are more psychological and technical than physiological or anthropometric. Despite ‘hidden’ attributes (e.g., coachability, flair, versatility, and vision) finding consensus on the e-Delphi poll, there was no evidence to support these traits when associated with a specific playing position.
Conclusion: For those practitioners responsible for talent recruitment, our findings may provide greater understanding of the multiple attributes required for some playing positions. However, further ecological research is required to assess the veracity of our claims
Zwanzig-Mori projection operators and EEG dynamics: deriving a simple equation of motion
We present a macroscopic theory of electroencephalogram (EEG) dynamics based on the laws of motion that govern atomic and molecular motion. The theory is an application of Zwanzig-Mori projection operators. The result is a simple equation of motion that has the form of a generalized Langevin equation (GLE), which requires knowledge only of macroscopic properties. The macroscopic properties can be extracted from experimental data by one of two possible variational principles. These variational principles are our principal contribution to the formalism. Potential applications are discussed, including applications to the theory of critical phenomena in the brain, Granger causality and Kalman filters
Wnt4 and LAP2alpha as pacemakers of Thymic Epithelial Senescence
Age-associated thymic involution has considerable physiological impact by inhibiting de novo T-cell selection. This impaired T-cell production leads to weakened immune responses. Yet the molecular mechanisms of thymic stromal adipose involution are not clear. Age-related alterations also occur in the murine thymus providing an excellent model system. In the present work structural and molecular changes of the murine thymic stroma were investigated during aging. We show that thymic epithelial senescence correlates with significant destruction of epithelial network followed by adipose involution. We also show in purified thymic epithelial cells the age-related down-regulation of Wnt4 (and subsequently FoxN1), and the prominent increase in LAP2α expression. These senescence-related changes of gene expression are strikingly similar to those observed during mesenchymal to pre-adipocyte differentiation of fibroblast cells suggesting similar molecular background in epithelial cells. For molecular level proof-of-principle stable LAP2α and Wnt4-over-expressing thymic epithelial cell lines were established. LAP2α over-expression provoked a surge of PPARγ expression, a transcription factor expressed in pre-adipocytes. In contrast, additional Wnt4 decreased the mRNA level of ADRP, a target gene of PPARγ. Murine embryonic thymic lobes have also been transfected with LAP2α- or Wnt4-encoding lentiviral vectors. As expected LAP2α over-expression increased, while additional Wnt4 secretion suppressed PPARγ expression. Based on these pioneer experiments we propose that decreased Wnt activity and increased LAP2α expression provide the molecular basis during thymic senescence. We suggest that these molecular changes trigger thymic epithelial senescence accompanied by adipose involution. This process may either occur directly where epithelium can trans-differentiate into pre-adipocytes; or indirectly where first epithelial to mesenchymal transition (EMT) occurs followed by subsequent pre-adipocyte differentiation. The latter version fits better with literature data and is supported by the observed histological and molecular level changes
Painful rib hump: a new clinical sign for detecting intraspinal rib displacement in scoliosis due to neurofibromatosis
BACKGROUND: Spinal cord compression and associate neurological impairment is rare in patients with scoliosis and neurofibromatosis. Common reasons are vertebral subluxation, dislocation, angulation and tumorous lesions around the spinal canal. Only twelve cases of intraspinal rib dislocation have been reported in the literature. The aim of this report is to present a case of rib penetration through neural foramen at the apex of a scoliotic curve in neurofibromatosis and to introduce a new clinical sign for its detection. METHODS: A 13-year-old girl was evaluated for progressive left thoracic kyphoscoliotic curve due to a type I neurofibromatosis. Clinical examination revealed multiple large thoracic and abdominal "cafe-au-lait" spots, neurological impairment of the lower limbs and the presence of a thoracic gibbous that was painful to pressure at the level of the left eighth rib (Painful Rib Hump). CT-scan showed detachment and translocation of the cephalic end of the left eighth rib into the adjacent enlarged neural foramen. The M.R.I. examination of the spine showed neither cord abnormality nor neurogenic tumor. RESULTS: The patient underwent resection of the intraspinal mobile eighth rib head and posterior spinal instrumentation and was neurologically fully recovered six months postoperatively. CONCLUSION: Spine surgeons should be aware of intraspinal rib displacement in scoliotic curves in neurofibromatosis. Painful rib hump is a valuable diagnostic tool for this rare clinical entity
CF2 Represses Actin 88F Gene Expression and Maintains Filament Balance during Indirect Flight Muscle Development in Drosophila
The zinc finger protein CF2 is a characterized activator of muscle structural genes in the body wall muscles of the Drosophila larva. To investigate the function of CF2 in the indirect flight muscle (IFM), we examined the phenotypes of flies bearing five homozygous viable mutations. The gross structure of the IFM was not affected, but the stronger hypomorphic alleles caused an increase of up to 1.5X in the diameter of the myofibrils. This size increase did not cause any disruption of the hexameric arrangement of thick and thin filaments. RT-PCR analysis revealed an increase in the transcription of several structural genes. Ectopic overexpression of CF2 in the developing IFM disrupts muscle formation. While our results indicate a role for CF2 as a direct negative regulator of the thin filament protein gene Actin 88F (Act88F), effects on levels of transcripts of myosin heavy chain (mhc) appear to be indirect. This role is in direct contrast to that described in the larval muscles, where CF2 activates structural gene expression. The variation in myofibril phenotypes of CF2 mutants suggest the CF2 may have separate functions in fine-tuning expression of structural genes to insure proper filament stoichiometry, and monitoring and/or controlling the final myofibril size
Preconditioning of mesenchymal stromal cells with low-intensity ultrasound: influence on chondrogenesis and directed SOX9 signaling pathways
Background: Continuous low-intensity ultrasound (cLIUS) facilitates the chondrogenic differentiation of human mesenchymal stromal cells (MSCs) in the absence of exogenously added transforming growth factor-beta (TGFβ) by upregulating the expression of transcription factor SOX9, a master regulator of chondrogenesis. The present study evaluated the molecular events associated with the signaling pathways impacting SOX9 gene and protein expression under cLIUS.
Methods: Human bone marrow-derived MSCs were exposed to cLIUS stimulation at 14 kPa (5 MHz, 2.5 Vpp) for 5 min. The gene and protein expression of SOX9 was evaluated. The specificity of SOX9 upregulation under cLIUS was determined by treating the MSCs with small molecule inhibitors of select signaling molecules, followed by cLIUS treatment. Signaling events regulating SOX9 expression under cLIUS were analyzed by gene expression, immunofluorescence staining, and western blotting.
Results: cLIUS upregulated the gene expression of SOX9 and enhanced the nuclear localization of SOX9 protein when compared to non-cLIUS-stimulated control. cLIUS was noted to enhance the phosphorylation of the signaling molecule ERK1/2. Inhibition of MEK/ERK1/2 by PD98059 resulted in the effective abrogation of cLIUS-induced SOX9 expression, indicating that cLIUS-induced SOX9 upregulation was dependent on the phosphorylation of ERK1/2. Inhibition of integrin and TRPV4, the upstream cell-surface effectors of ERK1/2, did not inhibit the phosphorylation of ERK1/2 and therefore did not abrogate cLIUS-induced SOX9 expression, thereby suggesting the involvement of other mechanoreceptors. Consequently, the effect of cLIUS on the actin cytoskeleton, a mechanosensitive receptor regulating SOX9, was evaluated. Diffused and disrupted actin fibers observed in MSCs under cLIUS closely resembled actin disruption by treatment with cytoskeletal drug Y27632, which is known to increase the gene expression of SOX9. The upregulation of SOX9 under cLIUS was, therefore, related to cLIUS-induced actin reorganization. SOX9 upregulation induced by actin reorganization was also found to be dependent on the phosphorylation of ERK1/2.
Conclusions: Collectively, preconditioning of MSCs by cLIUS resulted in the nuclear localization of SOX9, phosphorylation of ERK1/2 and disruption of actin filaments, and the expression of SOX9 was dependent on the phosphorylation of ERK1/2 under cLIUS
A randomised, controlled crossover comparison of the C-MAC videolaryngoscope with direct laryngoscopy in 150 patients during routine induction of anaesthesia
<p>Abstract</p> <p>Background</p> <p>The C-MAC<sup>® </sup>(Karl Storz, Tuttlingen, Germany) has recently been introduced as a new device for videolaryngoscopy guided intubation. The purpose of the present study was to compare for the first time the C-MAC with conventional direct laryngoscopy in 150 patients during routine induction of anaesthesia.</p> <p>Methods</p> <p>After approval of the institutional review board and written informed consent, 150 patients (ASA I-III) with general anaesthesia were enrolled. Computer-based open crossover randomisation was used to determine the sequence of the three laryngoscopies: Conventional direct laryngoscopy (HEINE Macintosh classic, Herrsching, Germany; blade sizes 3 or 4; <it>DL </it>group), C-MAC size 3 (<it>C-MAC3 </it>group) and C-MAC size 4 (<it>C-MAC4 </it>group) videolaryngoscopy, respectively. After 50 patients, laryngoscopy technique in the C-MAC4 group was changed to the straight blade technique described by Miller (C-MAC4/SBT).</p> <p>Results</p> <p>Including all 150 patients (70 male, aged (median [range]) 53 [20-82] years, 80 [48-179] kg), there was no difference of glottic view between DL, C-MAC3, C-MAC4, and C-MAC4/SBT groups; however, worst glottic view (C/L 4) was only seen with DL, but not with C-MAC videolaryngoscopy. In the subgroup of patients that had suboptimal glottic view with DL (C/L≥2a; n = 24), glottic view was improved in the C-MAC4/SBT group; C/L class improved by three classes in 5 patients, by two classes in 2 patients, by one class in 8 patients, remained unchanged in 8 patients, or decreased by two classes in 1 patient. The median (range) time taken for tracheal intubation in the DL, C-MAC3, C-MAC4 and C-MAC4/SBT groups was 8 sec (2-91 sec; n = 44), 10 sec (2-60 sec; n = 37), 8 sec (5-80 sec; n = 18) and 12 sec (2-70 sec; n = 51), respectively.</p> <p>Conclusions</p> <p>Combining the benefits of conventional direct laryngoscopy and videolaryngoscopy in one device, the C-MAC may serve as a standard intubation device for both routine airway management and educational purposes. However, in patients with suboptimal glottic view (C/L≥2a), the C-MAC size 4 with straight blade technique may reduce the number of C/L 3 or C/L 4 views, and therefore facilitate intubation. Further studies on patients with difficult airway should be performed to confirm these findings.</p
The Reform of Employee Compensation in China’s Industrial Enterprises
Although employee compensation reform in Chinese industrial sector has been discussed in the literature, the real changes in compensation system and pay practices have received insufficient attention and warrant further examination. This paper briefly reviews the pre- and post-reform compensation system, and reports the results of a survey of pay practices in the four major types of industrial enterprises in China. The research findings indicate that the type of enterprise ownership has little influence on general compensation practices, adoption of profit-sharing plans, and subsidy and allowance packages. In general, pay is linked more to individual performance and has become an important incentive to Chinese employees. However, differences are found across the enterprise types with regard to performance-related pay. Current pay practices are positively correlated to overall effectiveness of the enterprise
Impacts of organic and conventional crop management on diversity and activity of free-living nitrogen fixing bacteria and total bacteria are subsidiary to temporal effects
A three year field study (2007-2009) of the diversity and numbers of the total and metabolically active free-living diazotophic bacteria and total bacterial communities in organic and conventionally managed agricultural soil was conducted at the Nafferton Factorial Systems Comparison (NFSC) study, in northeast England. The result demonstrated that there was no consistent effect of either organic or conventional soil management across the three years on the diversity or quantity of either diazotrophic or total bacterial communities. However, ordination analyses carried out on data from each individual year showed that factors associated with the different fertility management measures including availability of nitrogen species, organic carbon and pH, did exert significant effects on the structure of both diazotrophic and total bacterial communities. It appeared that the dominant drivers of qualitative and quantitative changes in both communities were annual and seasonal effects. Moreover, regression analyses showed activity of both communities was significantly affected by soil temperature and climatic conditions. The diazotrophic community showed no significant change in diversity across the three years, however, the total bacterial community significantly increased in diversity year on year. Diversity was always greatest during March for both diazotrophic and total bacterial communities. Quantitative analyses using qPCR of each community indicated that metabolically active diazotrophs were highest in year 1 but the population significantly declined in year 2 before recovering somewhat in the final year. The total bacterial population in contrast increased significantly each year. Seasonal effects were less consistent in this quantitative study
- …