913 research outputs found

    Atomically-flat, chemically-stable, superconducting epitaxial thin film of iron-based superconductor, cobalt-doped BaFe2_2As2_2

    Full text link
    Epitaxial growth of Fe-based superconductors such as Co-doped SrFe2_2As2_2 (SrFe2_2As2_2:Co) was reported recently, but has still insufficient properties for device application because they have rough surfaces and are decomposed by reactions with water vapor in an ambient atmosphere. This letter reports that epitaxial films of Co-doped BaFe2_2As2_2 grown at 700 oC show the onset superconducting transition tempearture of 20 K. The transition is sharper than those observed on the SrFe2_2As2_2:Co films, which would originate from their improved crystallinity. These films also have atomically-flat surfaces with steps-and-terraces structures and exhibit chemical stability against exposure to water vapor

    Postnatal Pancreas of Mice Contains Tripotent Progenitors Capable of Giving Rise to Duct, Acinar, and Endocrine Cells In Vitro

    Get PDF
    Postnatal pancreas is a potential source for progenitor cells to generate endocrine β-cells for treating type 1 diabetes. However, it remains unclear whether young (1-week-old) pancreas harbors multipotent progenitors capable of differentiating into duct, acinar, and endocrine cells. Laminin is an extracellular matrix (ECM) protein important for β-cells' survival and function. We established an artificial extracellular matrix (aECM) protein that contains the functional IKVAV (Ile-Lys-Val-Ala-Val) sequence derived from laminin (designated aECM-lam). Whether IKVAV is necessary for endocrine differentiation in vitro is unknown. To answer these questions, we cultured single cells from 1-week-old pancreas in semi-solid media supplemented with aECM-lam, aECM-scr (which contains a scrambled sequence instead of IKVAV), or Matrigel. We found that colonies were generated in all materials. Individual colonies were examined by microfluidic reverse transcription-polymerase chain reaction, immunostaining, and electron microscopy analyses. The majority of the colonies expressed markers for endocrine, acinar, and ductal lineages, demonstrating tri-lineage potential of individual colony-forming progenitors. Colonies grown in aECM-lam expressed higher levels of endocrine markers Insulin1, Insulin2, and Glucagon compared with those grown in aECM-scr and Matrigel, indicating that the IKVAV sequence enhances endocrine differentiation. In contrast, Matrigel was inhibitory for endocrine gene expression. Colonies grown in aECM-lam displayed the hallmarks of functional β-cells: mature insulin granules and glucose-stimulated insulin secretion. Colony-forming progenitors were enriched in the CD133^(high) fraction and among 230 micro-manipulated single CD133^(high) cells, four gave rise to colonies that expressed tri-lineage markers. We conclude that young postnatal pancreas contains multipotent progenitor cells and that aECM-lam promotes differentiation of β-like cells in vitro

    Colony-forming cells in the adult mouse pancreas are expandable in Matrigel and form endocrine/acinar colonies in laminin hydrogel

    Get PDF
    The study of hematopoietic colony-forming units using semisolid culture media has greatly advanced the knowledge of hematopoiesis. Here we report that similar methods can be used to study pancreatic colony-forming units. We have developed two pancreatic colony assays that enable quantitative and functional analyses of progenitor-like cells isolated from dissociated adult (2–4 mo old) murine pancreas. We find that a methylcellulose-based semisolid medium containing Matrigel allows growth of duct-like “Ring/Dense” colonies from a rare (∼1%) population of total pancreatic single cells. With the addition of roof plate-specific spondin 1, a wingless-int agonist, Ring/Dense colony-forming cells can be expanded more than 100,000-fold when serially dissociated and replated in the presence of Matrigel. When cells grown in Matrigel are then transferred to a Matrigel-free semisolid medium with a unique laminin-based hydrogel, some cells grow and differentiate into another type of colony, which we name “Endocrine/Acinar.” These Endocrine/Acinar colonies are comprised mostly of endocrine- and acinar-like cells, as ascertained by RNA expression analysis, immunohistochemistry, and electron microscopy. Most Endocrine/Acinar colonies contain beta-like cells that secrete insulin/C-peptide in response to D-glucose and theophylline. These results demonstrate robust self-renewal and differentiation of adult Ring/Dense colony-forming units in vitro and suggest an approach to producing beta-like cells for cell replacement of type 1 diabetes. The methods described, which include microfluidic expression analysis of single cells and colonies, should also advance study of pancreas development and pancreatic progenitor cells

    Distinct transport behaviors of LaFe1-yCoyAsO1-xFx (x=0.11) between the superconducting and nonsuperconducting metallic y regions divided by y ~ 0.05

    Full text link
    Electrical resistivities, Hall coefficients and thermoelectric powers have been measured for polycrystalline samples of LaFe1-yCoyAsO1-xFx (x=0.11) with various values of y. The results show that there exists clear distinction of these transport behaviors between the superconducting and nonsuperconducting metallic regions of y divided by the boundary value yc~0.05. We have found that the behaviors in both regions are very similar to those of high-Tc Cu oxides in the corresponding phases. If they reflect, as in the case of Cu oxides, effects of strong magnetic fluctuations, the energy scale of the fluctuations is considered to be smaller than that of the high Cu oxides by a factor of ~1/2. Arguments on the electronic nature and superconducting symmetry are presented on the basis of the observed small rate of the Tc suppression rate by the Co doping.Comment: 8 pages, 4 figures, submitted to J. Phys. Soc. Jp

    Colony-Forming Progenitor Cells in the Postnatal Mouse Liver and Pancreas Give Rise to Morphologically Distinct Insulin-Expressing Colonies in 3D Cultures

    Get PDF
    In our previous studies, colony-forming progenitor cells isolated from murine embryonic stem cell-derived cultures were differentiated into morphologically distinct insulin-expressing colonies. These colonies were small and not light-reflective when observed by phase-contrast microscopy (therefore termed “Dark” colonies). A single progenitor cell capable of giving rise to a Dark colony was termed a Dark colony-forming unit (CFU-Dark). The goal of the current study was to test whether endogenous pancreas, and its developmentally related liver, harbored CFU-Dark. Here we show that dissociated single cells from liver and pancreas of one-week-old mice give rise to Dark colonies in methylcellulose-based semisolid culture media containing either Matrigel or laminin hydrogel (an artificial extracellular matrix protein). CFU-Dark comprise approximately 0.1% and 0.03% of the postnatal hepatic and pancreatic cells, respectively. Adult liver also contains CFU-Dark, but at a much lower frequency (~0.003%). Microfluidic qRT-PCR, immunostaining, and electron microscopy analyses of individually handpicked colonies reveal the expression of insulin in many, but not all, Dark colonies. Most pancreatic insulin-positive Dark colonies also express glucagon, whereas liver colonies do not. Liver CFU-Dark require Matrigel, but not laminin hydrogel, to become insulin-positive. In contrast, laminin hydrogel is sufficient to support the development of pancreatic Dark colonies that express insulin. Postnatal liver CFU-Dark display a cell surface marker CD133^(+)CD49f^(low)CD107b^(low) phenotype, while pancreatic CFU-Dark are CD133^-. Together, these results demonstrate that specific progenitor cells in the postnatal liver and pancreas are capable of developing into insulin-expressing colonies, but they differ in frequency, marker expression, and matrix protein requirements for growth

    Glucocorticoid signaling enhances expression of glucose-sensing molecules in immature pancreatic beta-like cells derived from murine embryonic stem cells in vitro

    Get PDF
    Pluripotent stem cells may serve as an alternative source of beta-like cells for replacement therapy of type 1 diabetes; however, the beta-like cells generated in many differentiation protocols are immature. The maturation of endogenous beta cells involves an increase in insulin expression starting in late gestation and a gradual acquisition of the abilities to sense glucose and secrete insulin by week 2 after birth in mice; however, what molecules regulate these maturation processes are incompletely known. Here, we aim to identify small molecules that affect immature beta cells. A cell-based assay, employing pancreatic beta-like cells derived from murine embryonic stem (ES) cells harboring a transgene containing an Insulin 1-promoter driven enhanced green fluorescent protein reporter, was used to screen a compound library (NIH Clinical Collection-003). Cortisone, a glucocorticoid, was among five positive hit compounds. Quantitative RT-PCR analysis revealed that glucocorticoids enhance the gene expression of not only insulin 1 but also glucose transporter-2 (Glut2; Slc2a2) and glucokinase (Gck), two molecules important for glucose sensing. Mifepristone, a pharmacological inhibitor of glucocorticoid receptor (GR) signaling, reduced the effects of glucocorticoids on Glut2 and Gck expression. The effects of glucocorticoids on ES-derived cells were further validated in immature primary islets. Isolated islets from 1-week-old mice had an increased Glut2 and Gck expression in response to a 4-day treatment of exogenous hydrocortisone in vitro. Gene deletion of GR in beta cells using rat insulin 2 promoter-driven Cre crossed with GRflox/flox mice resulted in a reduced gene expression of Glut2, but not Gck, and an abrogation of insulin secretion when islets were incubated in 0.5 mM D-glucose and stimulated by 17 mM D-glucose in vitro. These results demonstrate that glucocorticoids positively regulate glucose sensors in immature murine beta-like cells

    Cells with surface expression of CD133^(high)CD71^(low) are enriched for tripotent colony-forming progenitor cells in the adult murine pancreas

    Get PDF
    Progenitor cells in the adult pancreas are potential sources of endocrine beta cells for treating type 1 diabetes. Previously, we identified tri-potent progenitor cells in the adult (2–4 month-old) murine pancreas that were capable of self-renewal and differentiation into duct, acinar, and endocrine cells in vitro. These progenitor cells were named pancreatic colony-forming units (PCFUs). However, because PCFUs are a minor population in the pancreas (~ 1%) they are difficult to study. To enrich PCFUs, strategies using cell-surface marker analyses and fluorescence-activated cell sorting were developed. We found that CD133^(high)CD71^(low) cells, but not other cell populations, enriched PCFUs by up to 30 fold compared to the unsorted cells. CD133^(high)CD71^(low) cells generated primary, secondary, and subsequent colonies when serially re-plated in Matrigel-containing cultures, suggesting self-renewal abilities. In the presence of a laminin hydrogel, CD133^(high)CD71^(low) cells gave rise to colonies that contained duct, acinar, and Insulin+ Glucagon+ double-hormonal endocrine cells. Colonies from the laminin hydrogel culture were implanted into diabetic mice, and five weeks later duct, acinar, and Insulin+ Glucagon− cells were detected in the grafts, demonstrating tri-lineage differentiation potential of CD133^(high)CD71^(low) cells. These CD133^(high)CD71^(low) cells will enable future studies of putative adult pancreas stem cells in vivo

    Impact of Continuous Flow Left Ventricular Assist Device Therapy on Chronic Kidney Disease: A Longitudinal Multicenter Study

    Get PDF
    Background: Many patients undergoing durable left ventricular assist device (LVAD) implantation suffer from chronic kidney disease (CKD). Therefore, we investigated the effect of LVAD support on CKD. Methods: A retrospective multicenter cohort study, including all patients undergoing LVAD (HeartMate II (n = 330), HeartMate 3 (n = 22) and HeartWare (n = 48) implantation. In total, 227 (56.8%) patients were implanted as bridge-to-transplantation; 154 (38.5%) as destination therapy; and 19 (4.7%) as bridge-to-decision. Serum creatinine measurements were collected over a 2-year follow-up period. Patients were stratified based on CKD stage. Results: Overall, 400 patients (mean age 53 ± 14 years, 75% male) were included: 186 (46.5%) patients had CKD stage 1 or 2; 93 (23.3%) had CKD stage 3a; 82 (20.5%) had CKD stage 3b; and 39 (9.8%) had CKD stage 4 or 5 prior to LVAD implantation. During a median follow-up of 179 days (IQR 28–627), 32,629 creatinine measurements were available. Improvement of kidney function was noticed in every preoperative CKD-stage group. Following this improvement, estimated glomerular filtration rates regressed to baseline values for all CKD stages. Patients showing early renal function improvement were younger and in worse preoperative condition. Moreover, survival rates were higher in patients showing early improvement (69% vs 56%, log-rank P = 0.013). Conclusions: Renal function following LVAD implantation is characterized by improvement, steady state and subsequent deterioration. Patients who showed early renal function improvement were in worse preoperative condition, however, and had higher survival rates at 2 years of follow-up

    Thin Film Growth and Device Fabrication of Iron-Based Superconductors

    Full text link
    Iron-based superconductors have received much attention as a new family of high-temperature superconductors owing to their unique properties and distinct differences from cuprates and conventional superconductors. This paper reviews progress in thin film research on iron-based superconductors since their discovery for each of five material systems with an emphasis on growth, physical properties, device fabrication, and relevant bulk material properties.Comment: To appear in J. Phys. Soc. Jp
    corecore