944 research outputs found
Mutational analysis of feedback inhibition and catalytic sites of prephenate dehydratase from Corynebacterium glutamicum
Prephenate dehydratase is a key regulatory enzyme in the phenylalanine-specific pathway of Corynebacterium glutamicum. PCR-based random mutagenesis and functional complementation were used to screen for m-fluorophenylalanine (mFP)-resistant mutants. Comparison of the amino acid sequence of the mutant prephenate dehydratases indicated that Ser-99 plays a role in the feedback regulation of the enzyme. When Ser-99 of the wild-type enzyme was replaced by Met, the specific activity of the mutant enzyme was 30% lower than that of the wild-type. The Ser99Met mutant was active in the presence of 50 muM phenylalanine, whereas the wild-type enzyme was not. The functional roles of the eight conserved residues of prephenate dehydratase were investigated by site-directed mutagenesis. Glu64Asp substitution reduced enzyme activity by 15%, with a 4.5- and 1.7-fold increase in K-m and k(cat) values, respectively. Replacement of Thr-183 by either Ala or Tyr resulted in a complete loss of enzyme activity. Substitution of Arg-184 with Leu resulted in a 50% decrease of enzyme activity. The specific activity for Phe185Tyr was more than 96% lower than that of the wild-type, and the K-m value was 26-fold higher. Alterations in the conserved Asp-76, Glu-89, His-115, and Arg-236 residues did not cause a significant change in the K-m and k(cat) values. These results indicated that Glu-64, Thr-183, Arg-184, and Phe-185 residues might be involved in substrate binding and/or catalytic activity
Recommended from our members
Effect of wind speed on aerosol optical depth over remote oceans, based on data from the Maritime Aerosol Network
The Maritime Aerosol Network (MAN) has been collecting data over the oceans since November 2006. The MAN archive provides a valuable resource for aerosol studies in maritime environments. In the current paper we investigate correlations between ship-borne aerosol optical depth (AOD) and near-surface wind speed, either measured (onboard or from satellite) or modeled (NCEP). According to our analysis, wind speed influences columnar aerosol optical depth, although the slope of the linear regression between AOD and wind speed is not steep (~0.004–0.005), even for strong winds over 10 m s−1. The relationships show significant scatter (correlation coefficients typically in the range 0.3–0.5); the majority of this scatter can be explained by the uncertainty on the input data. The various wind speed sources considered yield similar patterns. Results are in good agreement with the majority of previously published relationships between surface wind speed and ship-based or satellite-based AOD measurements. The basic relationships are similar for all the wind speed sources considered; however, the gradient of the relationship varies by around a factor of two depending on the wind data used
Improved tests of extra-dimensional physics and thermal quantum field theory from new Casimir force measurements
We report new constraints on extra-dimensional models and other physics
beyond the Standard Model based on measurements of the Casimir force between
two dissimilar metals for separations in the range 0.2--1.2 m. The Casimir
force between an Au-coated sphere and a Cu-coated plate of a
microelectromechanical torsional oscillator was measured statically with an
absolute error of 0.3 pN. In addition, the Casimir pressure between two
parallel plates was determined dynamically with an absolute error of mPa. Within the limits of experimental and theoretical errors, the results
are in agreement with a theory that takes into account the finite conductivity
and roughness of the two metals. The level of agreement between experiment and
theory was then used to set limits on the predictions of extra-dimensional
physics and thermal quantum field theory. It is shown that two theoretical
approaches to the thermal Casimir force which predict effects linear in
temperture are ruled out by these experiments. Finally, constraints on Yukawa
corrections to Newton's law of gravity are strengthened by more than an order
of magnitude in the range 56 nm to 330 nm.Comment: Revtex 4, 35 pages, 14 figures in .gif format, accepted for
publication in Phys. Rev.
Interacting entropy-corrected holographic dark energy with apparent horizon as an infrared cutoff
In this work we consider the entropy-corrected version of interacting
holographic dark energy (HDE), in the non-flat universe enclosed by apparent
horizon. Two corrections of entropy so-called logarithmic 'LEC' and power-law
'PLEC' in HDE model with apparent horizon as an IR-cutoff are studied. The
ratio of dark matter to dark energy densities , equation of state parameter
and deceleration parameter are obtained. We show that the cosmic
coincidence is satisfied for both interacting models. By studying the effect of
interaction in EoS parameter, we see that the phantom divide may be crossed and
also find that the interacting models can drive an acceleration expansion at
the present and future, while in non-interacting case, this expansion can
happen only at the early time. The graphs of deceleration parameter for
interacting models, show that the present acceleration expansion is preceded by
a sufficiently long period deceleration at past. Moreover, the thermodynamical
interpretation of interaction between LECHDE and dark matter is described. We
obtain a relation between the interaction term of dark components and thermal
fluctuation in a non-flat universe, bounded by the apparent horizon. In
limiting case, for ordinary HDE, the relation of interaction term versus
thermal fluctuation is also calculated.Comment: 20 pages, 8 figures, figures changed, some Ref. is added, changed
some sentences, accepted by General relativity and gravitation (GERG
Interacting entropy-corrected new agegraphic dark energy in Brans-Dicke cosmology
Motivated by a recent work of one of us [1], we extend it by using quantum
(or entropy) corrected new agegraphic dark energy in the Brans-Dicke cosmology.
The correction terms are motivated from the loop quantum gravity which is one
of the competitive theories of quantum gravity. Taking the non-flat background
spacetime along with the conformal age of the universe as the length scale, we
derive the dynamical equation of state of dark energy and the deceleration
parameter. An important consequence of this study is the phantom divide
scenario with entropy-corrected new agegraphic dark energy. Moreover, we assume
a system of dark matter, radiation and dark energy, while the later interacts
only with dark matter. We obtain some essential expressions related with dark
energy dynamics. The cosmic coincidence problem is also resolved in our model.Comment: 16 pages, no figure, accepted for publication in Gen. Relativ. Gra
Measurement of the Branching Fraction for B->eta' K and Search for B->eta'pi+
We report measurements for two-body charmless B decays with an eta' meson in
the final state. Using 11.1X10^6 BBbar pairs collected with the Belle detector,
we find BF(B^+ ->eta'K^+)=(79^+12_-11 +-9)x10^-6 and BF(B^0 ->
eta'K^0)=(55^+19_-16 +-8)x10^-6, where the first and second errors are
statistical and systematic, respectively. No signal is observed in the mode B^+
-> eta' pi^+, and we set a 90% confidence level upper limit of BF(B^+->
eta'pi^+) eta'K^+- decays is
investigated and a limit at 90% confidence level of -0.20<Acp<0.32 is obtained.Comment: Submitted to Physics Letters
Observation of Cabibbo-suppressed and W-exchange Lambda_c^+ baryon decays
We present measurements of the Cabibbo-suppressed decays Lambda_c^+ -->
Lambda0 K+ and Lambda_c^+ --> Sigma0 K+ (both first observations), Lambda_c^+
--> Sigma+ K+ pi- (seen with large statistics for the first time), Lambda_c^+
--> p K+ K- and Lambda_c^+ --> p phi (measured with improved accuracy).
Improved branching ratio measurements for the decays Lambda_c^+ --> Sigma+ K+
K- and Lambda_c^+ --> Sigma+ phi, which are attributed to W-exchange diagrams,
are shown. We also present the first evidence for Lambda_c^+ --> Xi(1690)^0 K+
and set an upper limit on the non-resonant decay Lambda_c^+ --> Sigma+ K+ K-.
This analysis was performed using 32.6 fb^{-1} of data collected by the Belle
detector at the asymmetric e+ e- collider KEKB.Comment: Submitted to Phys. Lett. B. v2: A small correction to the Authorlist
was made. An earlier version of this analysis was released as
BELLE-CONF-0130, hep-ex/010800
Measurement of the inclusive semileptonic branching fraction of B mesons and |Vcb|
We present a measurement of the electron spectrum from inclusive semileptonic
{\it B} decay, using 5.1 fb of data collected with the
Belle detector. A high-momentum lepton tag was used to separate the
semileptonic {\it B} decay electrons from secondary decay electrons. We
obtained the branching fraction, , with minimal model dependence.
From this measurement, we derive a value for the Cabibbo-Kobayashi-Maskawa
matrix element .Comment: 16 pages, 3 figures, 3 table
Determination of |Vcb| using the semileptonic decay \bar{B}^0 --> D^{*+}e^-\bar{\nu}
We present a measurement of the Cabibbo-Kobayashi-Maskawa (CKM) matrix
element |Vcb| using a 10.2 fb^{-1} data sample recorded at the \Upsilon(4S)
resonance with the Belle detector at the KEKB asymmetric e^+e^- storage ring.
By extrapolating the differential decay width of the \bar{B}^0 -->
D^{*+}e^-\bar{\nu} decay to the kinematic limit at which the D^{*+} is at rest
with respect to the \bar{B}^0, we extract the product of |Vcb| with the
normalization of the decay form factor F(1), |Vcb |F(1)=
(3.54+/-0.19+/-0.18)x10^{-2}, where the first error is statistical and the
second is systematic. A value of |Vcb| = (3.88+/-0.21+/-0.20+/-0.19)x10^{-2} is
obtained using a theoretical calculation of F(1), where the third error is due
to the theoretical uncertainty in the value of F(1). The branching fraction
B(\bar{B}^0 --> D^{*+}e^-\bar{\nu}) is measured to be
(4.59+/-0.23+/-0.40)x10^{-2}.Comment: 20 pages, 6 figures, elsart.cls, submitted to PL
A Measurement of the Branching Fraction for the Inclusive B --> X(s) gamma Decays with the Belle Detector
We have measured the branching fraction of the inclusive radiative B meson
decay B --> X(s) gamma to be Br(B->X(s)gamma)=(3.36 +/- 0.53(stat) +/-
0.42(sys) +0.50-0.54(th)) x 10^{-4}.
The result is based on a sample of 6.07 x 10^6 BBbar events collected at the
Upsilon(4S) resonance with the Belle detector at the KEKB asymmetric e^+e^-
storage ring.Comment: 14 pages, 6 Postsript figures, uses elsart.cl
- …