12,510 research outputs found
Evaluation of aerothermal modeling computer programs
Various computer programs based upon the SIMPLE or SIMPLER algorithm were studied and compared for numerical accuracy, efficiency, and grid dependency. Four two-dimensional and one three-dimensional code originally developed by a number of research groups were considered. In general, the accuracy and computational efficieny of these TEACH type programs were improved by modifying the differencing schemes and their solvers. A brief description of each program is given. Error reduction, spline flux and second upwind differencing programs are covered
System Design for a Nuclear Electric Spacecraft Utilizing Out-of-core Thermionic Conversion
Basic guidelines are presented for a nuclear space power system which utilizes heat pipes to transport thermal power from a fast nuclear reactor to an out of core thermionic converter array. Design parameters are discussed for the nuclear reactor, heat pipes, thermionic converters, shields (neutron and gamma), waste heat rejection systems, and the electrical bus bar-cable system required to transport the high current/low voltage power to the processing equipment. Dimensions are compatible with shuttle payload bay constraints
NP-hardness of decoding quantum error-correction codes
Though the theory of quantum error correction is intimately related to the
classical coding theory, in particular, one can construct quantum error
correction codes (QECCs) from classical codes with the dual containing
property, this does not necessarily imply that the computational complexity of
decoding QECCs is the same as their classical counterparts. Instead, decoding
QECCs can be very much different from decoding classical codes due to the
degeneracy property. Intuitively, one expect degeneracy would simplify the
decoding since two different errors might not and need not be distinguished in
order to correct them. However, we show that general quantum decoding problem
is NP-hard regardless of the quantum codes being degenerate or non-degenerate.
This finding implies that no considerably fast decoding algorithm exists for
the general quantum decoding problems, and suggests the existence of a quantum
cryptosystem based on the hardness of decoding QECCs.Comment: 5 pages, no figure. Final version for publicatio
Toeplitz Inverse Covariance-Based Clustering of Multivariate Time Series Data
Subsequence clustering of multivariate time series is a useful tool for
discovering repeated patterns in temporal data. Once these patterns have been
discovered, seemingly complicated datasets can be interpreted as a temporal
sequence of only a small number of states, or clusters. For example, raw sensor
data from a fitness-tracking application can be expressed as a timeline of a
select few actions (i.e., walking, sitting, running). However, discovering
these patterns is challenging because it requires simultaneous segmentation and
clustering of the time series. Furthermore, interpreting the resulting clusters
is difficult, especially when the data is high-dimensional. Here we propose a
new method of model-based clustering, which we call Toeplitz Inverse
Covariance-based Clustering (TICC). Each cluster in the TICC method is defined
by a correlation network, or Markov random field (MRF), characterizing the
interdependencies between different observations in a typical subsequence of
that cluster. Based on this graphical representation, TICC simultaneously
segments and clusters the time series data. We solve the TICC problem through
alternating minimization, using a variation of the expectation maximization
(EM) algorithm. We derive closed-form solutions to efficiently solve the two
resulting subproblems in a scalable way, through dynamic programming and the
alternating direction method of multipliers (ADMM), respectively. We validate
our approach by comparing TICC to several state-of-the-art baselines in a
series of synthetic experiments, and we then demonstrate on an automobile
sensor dataset how TICC can be used to learn interpretable clusters in
real-world scenarios.Comment: This revised version fixes two small typos in the published versio
Scientific basis for safely shutting in the Macondo Well after the April 20, 2010 Deepwater Horizon blowout
As part of the government response to the Deepwater Horizon blowout, a Well Integrity Team evaluated the geologic hazards of shutting in the Macondo Well at the seafloor and determined the conditions under which it could safely be undertaken. Of particular concern was the possibility that, under the anticipated high shut-in pressures, oil could leak out of the well casing below the seafloor. Such a leak could lead to new geologic pathways for hydrocarbon release to the Gulf of Mexico. Evaluating this hazard required analyses of 2D and 3D seismic surveys, seafloor bathymetry, sediment properties, geophysical well logs, and drilling data to assess the geological, hydrological, and geomechanical conditions around the Macondo Well. After the well was successfully capped and shut in on July 15, 2010, a variety of monitoring activities were used to assess subsurface well integrity. These activities included acquisition of wellhead pressure data, marine multichannel seismic pro- files, seafloor and water-column sonar surveys, and wellhead visual/acoustic monitoring. These data showed that the Macondo Well was not leaking after shut in, and therefore, it could remain safely shut until reservoir pressures were suppressed (killed) with heavy drilling mud and the well was sealed with cement
Surface Acoustic Wave Probing of Ceramic Bearing Balls
This work is a continuation of our effort to develop a nondestructive technique for the detection and characterization of surface and near surface defects in ceramic bearing balls. We reported earlier on a method for detecting and sizing submicron surface depressions using a scanning acoustic microscope[1]. Our present work deals with the detection and sizing of surface cracks in the ceramic bearing balls, a problem which requires knowledge of the surface wave reflection coefficient of the crack, either at a single frequency in the long wavelength regime or as a function of frequency in the short wavelength regime. For this purpose, we need to learn the characteristics of surface wave propagation on spherical surfaces, the scattering of the surface waves from the cracks, and we need to develop a method for exciting the surface wave. We present a detailed theory of surface wave propagation on spheres. The results indicate that an arc source focuses the surface acoustic waved in a manner similar to bulk acoustic waves focusing by spherical transducers. We will present the details of this self focusing behavior. A spherical cap transducer structure similar to a planar wedge transducer is proposed to excite the spherical surface waves. We will present the details of the design of the spherical cap transducer for efficient surface wave excitation
The spin state transition in LaCoO; revising a revision
Using soft x-ray absorption spectroscopy and magnetic circular dichroism at
the Co- edge we reveal that the spin state transition in LaCoO
can be well described by a low-spin ground state and a triply-degenerate
high-spin first excited state. From the temperature dependence of the spectral
lineshapes we find that LaCoO at finite temperatures is an inhomogeneous
mixed-spin-state system. Crucial is that the magnetic circular dichroism signal
in the paramagnetic state carries a large orbital momentum. This directly shows
that the currently accepted low-/intermediate-spin picture is at variance.
Parameters derived from these spectroscopies fully explain existing magnetic
susceptibility, electron spin resonance and inelastic neutron data
- …