143 research outputs found
Corrugated Silicon Platelet Feed Horn Array for CMB Polarimetry at 150 GHz
Next generation cosmic microwave background (CMB) polarization anisotropy
measurements will feature focal plane arrays with more than 600 millimeter-wave
detectors. We make use of high-resolution photolithography and wafer-scale etch
tools to build planar arrays of corrugated platelet feeds in silicon with
highly symmetric beams, low cross-polarization and low side lobes. A compact
Au-plated corrugated Si feed designed for 150 GHz operation exhibited
performance equivalent to that of electroformed feeds: ~-0.2 dB insertion loss,
<-20 dB return loss from 120 GHz to 170 GHz, <-25 dB side lobes and <-23 dB
cross-polarization. We are currently fabricating a 50 mm diameter array with 84
horns consisting of 33 Si platelets as a prototype for the SPTpol and ACTpol
telescopes. Our fabrication facilities permit arrays up to 150 mm in diameter.Comment: 12 pages; SPIE proceedings for Millimeter, Submillimeter, and
Far-Infrared Detectors and Instrumentation for Astronomy V (Conference 7741,
June 2010, San Diego, CA, USA
Infrared Dielectric Properties of Low-stress Silicon Nitride
Silicon nitride thin films play an important role in the realization of sensors, filters, and high-performance circuits. Estimates of the dielectric function in the far- and mid-IR regime are derived from the observed transmittance spectra for a commonly employed low-stress silicon nitride formulation. The experimental, modeling, and numerical methods used to extract the dielectric parameters with an accuracy of approximately 4% are presented
Horn Coupled Multichroic Polarimeters for the Atacama Cosmology Telescope Polarization Experiment
Multichroic polarization sensitive detectors enable increased sensitivity and
spectral coverage for observations of the Cosmic Microwave Background (CMB). An
array optimized for dual frequency detectors can provide 1.7 times gain in
sensitivity compared to a single frequency array. We present the design and
measurements of horn coupled multichroic polarimeters encompassing the 90 and
150 GHz frequency bands and discuss our plans to field an array of these
detectors as part of the ACTPol project
Optical modeling and polarization calibration for CMB measurements with ACTPol and Advanced ACTPol
The Atacama Cosmology Telescope Polarimeter (ACTPol) is a polarization
sensitive upgrade to the Atacama Cosmology Telescope. Located at an elevation
of 5190 m, ACTPol measures the Cosmic Microwave Background (CMB) temperature
and polarization with arcminute-scale angular resolution. Calibration of the
detector angles is a critical step in producing maps of the CMB polarization.
Polarization angle offsets in the detector calibration can cause leakage in
polarization from E to B modes and induce a spurious signal in the EB and TB
cross correlations, which eliminates our ability to measure potential
cosmological sources of EB and TB signals, such as cosmic birefringence. We
present our optical modeling and measurements associated with calibrating the
detector angles in ACTPol.Comment: 12 pages, 8 figures, conference proceedings submitted to Proceedings
of SPIE; added reference in section 2 and merged repeated referenc
Results from the Atacama B-mode Search (ABS) Experiment
The Atacama B-mode Search (ABS) is an experiment designed to measure cosmic
microwave background (CMB) polarization at large angular scales (). It
operated from the ACT site at 5190~m elevation in northern Chile at 145 GHz
with a net sensitivity (NEQ) of 41 K. It employed an
ambient-temperature sapphire half-wave plate rotating at 2.55 Hz to modulate
the incident polarization signal and reduce systematic effects. We report here
on the analysis of data from a 2400 deg patch of sky centered at
declination and right ascension . We perform a blind
analysis. After unblinding, we find agreement with the Planck TE and EE
measurements on the same region of sky. We marginally detect polarized dust
emission and give an upper limit on the tensor-to-scalar ratio of (95%
cl) with the equivalent of 100 on-sky days of observation. We also present a
new measurement of the polarization of Tau A and introduce new methods
associated with HWP-based observations.Comment: 38 pages, 11 figure
L-Edge Spectroscopy of Dilute, Radiation-Sensitive Systems Using a Transition-Edge-Sensor Array
We present X-ray absorption spectroscopy and resonant inelastic X-ray
scattering (RIXS) measurements on the iron L-edge of 0.5 mM aqueous
ferricyanide. These measurements demonstrate the ability of high-throughput
transition-edge-sensor (TES) spectrometers to access the rich soft X-ray
(100-2000eV) spectroscopy regime for dilute and radiation-sensitive samples.
Our low-concentration data are in agreement with high-concentration
measurements recorded by conventional grating-based spectrometers. These
results show that soft X-ray RIXS spectroscopy acquired by high-throughput TES
spectrometers can be used to study the local electronic structure of dilute
metal-centered complexes relevant to biology, chemistry and catalysis. In
particular, TES spectrometers have a unique ability to characterize frozen
solutions of radiation- and temperature-sensitive samples.Comment: 19 pages, 4 figure
Statistical identification of gene association by CID in application of constructing ER regulatory network
<p>Abstract</p> <p>Background</p> <p>A variety of high-throughput techniques are now available for constructing comprehensive gene regulatory networks in systems biology. In this study, we report a new statistical approach for facilitating <it>in silico </it>inference of regulatory network structure. The new measure of association, coefficient of intrinsic dependence (CID), is model-free and can be applied to both continuous and categorical distributions. When given two variables X and Y, CID answers whether Y is dependent on X by examining the conditional distribution of Y given X. In this paper, we apply CID to analyze the regulatory relationships between transcription factors (TFs) (X) and their downstream genes (Y) based on clinical data. More specifically, we use estrogen receptor α (ERα) as the variable X, and the analyses are based on 48 clinical breast cancer gene expression arrays (48A).</p> <p>Results</p> <p>The analytical utility of CID was evaluated in comparison with four commonly used statistical methods, Galton-Pearson's correlation coefficient (GPCC), Student's <it>t</it>-test (STT), coefficient of determination (CoD), and mutual information (MI). When being compared to GPCC, CoD, and MI, CID reveals its preferential ability to discover the regulatory association where distribution of the mRNA expression levels on X and Y does not fit linear models. On the other hand, when CID is used to measure the association of a continuous variable (Y) against a discrete variable (X), it shows similar performance as compared to STT, and appears to outperform CoD and MI. In addition, this study established a two-layer transcriptional regulatory network to exemplify the usage of CID, in combination with GPCC, in deciphering gene networks based on gene expression profiles from patient arrays.</p> <p>Conclusion</p> <p>CID is shown to provide useful information for identifying associations between genes and transcription factors of interest in patient arrays. When coupled with the relationships detected by GPCC, the association predicted by CID are applicable to the construction of transcriptional regulatory networks. This study shows how information from different data sources and learning algorithms can be integrated to investigate whether relevant regulatory mechanisms identified in cell models can also be partially re-identified in clinical samples of breast cancers.</p> <p>Availability</p> <p>the implementation of CID in R codes can be freely downloaded from <url>http://homepage.ntu.edu.tw/~lyliu/BC/</url>.</p
- …