1,696 research outputs found

    Measuring antibiotic availability and use in 20 low- and middle-income countries

    Get PDF
    Objective To assess antibiotic availability and use in health facilities in low- and middle-income countries, using the service provision assessment and service availability and readiness assessment surveys. Methods We obtained data on antibiotic availability at 13 561 health facilities in 13 service provision assessment and 8 service availability and readiness assessment surveys. In 10 service provision assessment surveys, child consultations with health-care providers were observed, giving data on antibiotic use in 22 699 children. Antibiotics were classified as access, watch or reserve, according to the World Health Organization’s AWaRe categories. The percentage of health-care facilities across countries with specific antibiotics available and the proportion of children receiving antibiotics for key clinical syndromes were estimated. Findings The surveys assessed the availability of 27 antibiotics (19 access, 7 watch, 1 unclassified). Co-trimoxazole and metronidazole were most widely available, being in stock at 89.5% (interquartile range, IQR: 11.6%) and 87.1% (IQR: 15.9%) of health facilities, respectively. In contrast, 17 other access and watch antibiotics were stocked, by fewer than a median of 50% of facilities. Of the 22 699 children observed, 60.1% (13 638) were prescribed antibiotics (mostly co-trimoxazole or amoxicillin). Children with respiratory conditions were most often prescribed antibiotics (76.1%; 8972/11 796) followed by undifferentiated fever (50.1%; 760/1518), diarrhoea (45.7%; 1293/2832) and malaria (30.3%; 352/1160). Conclusion Routine health facility surveys provided a valuable data source on the availability and use of antibiotics in low- and middle-income countries. Many access antibiotics were unavailable in a majority of most health-care facilities

    Mortality Of The Veined Rapa Whelk, Rapana Venosa, In Relation To A Bloom Of Alexandrium Monilatum In The York River, United States

    Get PDF
    Veined rapa whelks (Rapana venosa), carnivorous marine gastropods experienced significant mortality during an Alexandrium monilatum bloom in the lower York River, VA in September 2007. Rapa whelks stopped feeding as dissolved oxygen and chlorophyll concentrations increased with the development of the bloom. Whelk mortality was preceded by external signs of stress including reduced ventilation, inability to attach to hard Substrates, periodic Pumping of the opercular plate, and increased mucus production over a period of 24-48 h prior to death. High concentrations (2-7 mu g g(-1) tissue) of goniodimum A, a toxin produced by A. monilatum, were observed in bivalves attached to the shells of rapa whelks. Concentrations of goniodimum A in whelk foot tissue ranged from 0.02-8.39 mu g g(-1). Mortality of rapa whelks was 100%. Mortality of oysters (Crassostrea virginica) and northern quahogs (Mercenaria mercenaria) in the same flow through system was 0%. The symptoms displayed by the rapa whelks in the 24-48 h prior to death were indicative of paralysis and followed a similar time Course documented for other molluscs exposed to toxic A. monilatum

    Antibiotic prescriptions in Italian hospitalised children after serial point prevalence surveys (or pointless prevalence surveys): has anything actually changed over the years?

    Get PDF
    BACKGROUND: Point prevalence surveys have been used in several studies to provide immediate and easily comparable information about antibiotic use and showed that about one third of hospitalised children had on ongoing antimicrobial prescription during their hospital admission. The aim of this study, as part of the Global Antimicrobial Resistance, Prescribing and Efficacy in Neonates and Children project, is to describe antimicrobial prescriptions among hospitalised children in four tertiary care hospitals in Italy to show if something has changed over the years. METHODS: Four tertiary care Italian's hospitals joined three Point Prevalence Surveys (PPSs) in three different period of the year. All children under 18 years of age with an ongoing antimicrobial prescription, admitted on the participating wards at 8 o'clock in the morning of the selecting day were enrolled. RESULTS: A total of 1412 patients (475 neonates and 937 children) were admitted in the days of three PPSs. Overall, among the total admitted patients, 565 patients (40%) had an ongoing antimicrobial prescription in the days of the survey A total of 718 antibiotics were administered in the 485 admitted children and 133 in neonates. The most common indications for antibiotic therapy in children was Lower respiratory tract infections (244/718, 34%), while in neonates were prophylaxis for medical problems (35/133, 26.3%), newborn prophylaxis for newborn risk factors (29/133, 21.8%) and prophylaxis for surgical disease (15/133, 11.3%). CONCLUSIONS: Based on our results, it appears that nothing has changed since the last PPS and that the quality improved targets, underlyined in previous studies, are always the same. Serial PPSs can be part of AMS strategies but they are not sufficient alone to produce changes in clinical practice

    Diminished Alveolar Microvascular Reserves in Type 2 Diabetes Reflect Systemic Microangiopathy

    Get PDF
    OBJECTIVE—Alveolar microvascular function is moderately impaired in type 1 diabetes, as manifested by restriction of lung volume and diffusing capacity (DLCO). We examined whether similar impairment develops in type 2 diabetes and defined the physiologic sources of impairment as well as the relationships to glycemia and systemic microangiopathy

    Lymphatic vasculature mediates macrophage reverse cholesterol transport in mice

    Get PDF
    Reverse cholesterol transport (RCT) refers to the mobilization of cholesterol on HDL particles (HDL-C) from extravascular tissues to plasma, ultimately for fecal excretion. Little is known about how HDL-C leaves peripheral tissues to reach plasma. We first used 2 models of disrupted lymphatic drainage from skin — 1 surgical and the other genetic — to quantitatively track RCT following injection of [3H]-cholesterol–loaded macrophages upstream of blocked or absent lymphatic vessels. Macrophage RCT was markedly impaired in both models, even at sites with a leaky vasculature. Inhibited RCT was downstream of cholesterol efflux from macrophages, since macrophage efflux of a fluorescent cholesterol analog (BODIPY-cholesterol) was not altered by impaired lymphatic drainage. We next addressed whether RCT was mediated by lymphatic vessels from the aortic wall by loading the aortae of donor atherosclerotic Apoe-deficient mice with [2H]6-labeled cholesterol and surgically transplanting these aortae into recipient Apoe-deficient mice that were treated with anti-VEGFR3 antibody to block lymphatic regrowth or with control antibody to allow such regrowth. [2H]-Cholesterol was retained in aortae of anti–VEGFR3-treated mice. Thus, the lymphatic vessel route is critical for RCT from multiple tissues, including the aortic wall. These results suggest that supporting lymphatic transport function may facilitate cholesterol clearance in therapies aimed at reversing atherosclerosis

    Proteomic risk markers for coronary heart disease and stroke: validation and mediation of randomized trial hormone therapy effects on these diseases

    Get PDF
    Background: We previously reported mass spectrometry-based proteomic discovery research to identify novel plasma proteins related to the risk of coronary heart disease (CHD) and stroke, and to identify proteins with concentrations affected by the use of postmenopausal hormone therapy. Here we report CHD and stroke risk validation studies for highly ranked proteins, and consider the extent to which protein concentration changes relate to disease risk or provide an explanation for hormone therapy effects on these outcomes. Methods: Five proteins potentially associated with CHD (beta-2 microglobulin (B2M), alpha-1-acid glycoprotein 1 (ORM1), thrombospondin-1(THBS1), complement factor D pre-protein (CFD), and insulin-like growth factor binding protein 1 (IGFBP1)) and five potentially associated with stroke (B2M, IGFBP2, IGFBP4, IGFBP6, and hemopexin (HPX)) had high discovery phase significance level ranking and an available ELISA assay, and were included in case-control validation studies within the Women’s Health Initiative (WHI) hormone therapy trials. Protein concentrations, at baseline and 1 year following randomization, were assessed for 358 CHD cases and 362 stroke cases, along with corresponding disease-free controls. Disease association, and mediation of estrogen-alone and estrogen plus progestin effects on CHD and stroke risk, were assessed using logistic regression. Results: B2M, THBS1, and CFD were confirmed (P <0.05) as novel CHD risk markers, and B2M, IGFBP2, and IGFBP4 were confirmed as novel stroke disease risk markers, while the assay for HPX proved to be unreliable. The change from baseline to 1 year in B2M was associated (P <0.05) with subsequent stroke risk, and trended similarly with subsequent CHD risk. Change from baseline to 1 year in IGFBP1 was also associated with CHD risk, and this change provided evidence of hormone therapy effect mediation. Conclusions: Plasma B2M is confirmed to be an informative risk marker for both CHD and stroke. The B2M increase experienced by women during the first year of hormone therapy trial participation conveys cardiovascular disease risk. The increase in IGFBP1 similarly conveys CHD risk, and the magnitude of the IGFBP1 increase following hormone therapy may be a mediator of hormone therapy effects. Plasma THBS1 and CFD are confirmed as CHD risk markers, and plasma IGFBP4 and IGFBP2 are confirmed as stroke risk markers. Clinical trials registration ClinicalTrials.gov identifier: NCT0000061

    A statistical shape modelling framework to extract 3D shape biomarkers from medical imaging data: assessing arch morphology of repaired coarctation of the aorta

    Get PDF
    Background Medical image analysis in clinical practice is commonly carried out on 2D image data, without fully exploiting the detailed 3D anatomical information that is provided by modern non-invasive medical imaging techniques. In this paper, a statistical shape analysis method is presented, which enables the extraction of 3D anatomical shape features from cardiovascular magnetic resonance (CMR) image data, with no need for manual landmarking. The method was applied to repaired aortic coarctation arches that present complex shapes, with the aim of capturing shape features as biomarkers of potential functional relevance. The method is presented from the user-perspective and is evaluated by comparing results with traditional morphometric measurements. Methods Steps required to set up the statistical shape modelling analyses, from pre-processing of the CMR images to parameter setting and strategies to account for size differences and outliers, are described in detail. The anatomical mean shape of 20 aortic arches post-aortic coarctation repair (CoA) was computed based on surface models reconstructed from CMR data. By analysing transformations that deform the mean shape towards each of the individual patient’s anatomy, shape patterns related to differences in body surface area (BSA) and ejection fraction (EF) were extracted. The resulting shape vectors, describing shape features in 3D, were compared with traditionally measured 2D and 3D morphometric parameters. Results The computed 3D mean shape was close to population mean values of geometric shape descriptors and visually integrated characteristic shape features associated with our population of CoA shapes. After removing size effects due to differences in body surface area (BSA) between patients, distinct 3D shape features of the aortic arch correlated significantly with EF (r = 0.521, p = .022) and were well in agreement with trends as shown by traditional shape descriptors. Conclusions The suggested method has the potential to discover previously unknown 3D shape biomarkers from medical imaging data. Thus, it could contribute to improving diagnosis and risk stratification in complex cardiac disease
    corecore