40 research outputs found
Spin-orbit interaction enhancement in permalloy thin films by Pt doping
The spin-orbit interaction is an inherent part of magnetism, which links up the independent world of spins to the atomic lattice, thus controlling many functional properties of magnetic materials. In the widely used 3d transition metal ferromagnetic films, the spin-orbit interaction is relatively weak, due to low atomic number. Here we show that it is possible to enhance and tune the spin-orbit interaction by adding 5d platinum dopants into permalloy (Ni 81 Fe 19 ) thin films by a cosputtering technique. This is achieved without significant changes of the magnetic properties, due to the vicinity of Pt to meeting the Stoner criterion for the ferromagnetic state. The spin-orbit interaction is investigated by means of transport measurements (the anisotropic magnetoresistance and anomalous Hall effect), ferromagnetic resonance measurements to determine the Gilbert damping, as well as by measuring the x-ray magnetic circular dichroism at the L 3 and L 2 x-ray absorption edges to reveal the ratio of orbital to spin magnetic moments. It is shown that the effective spin-orbit interaction increases with Pt concentration within the 0%–10% Pt concentration range in a way that is consistent with theoretical expectations for all four measurements
Magnetic properties and field-driven dynamics of chiral domain walls in epitaxial Pt/Co/AuxPt1-x trilayers
Chiral domain walls in ultrathin perpendicularly magnetized layers have a Néel structure stabilized by a Dzyaloshinskii-Moriya interaction (DMI) that is generated at the interface between the ferromagnet and a heavy metal. Different interface materials or properties are required above and below a ferromagnetic film in order to generate the structural inversion asymmetry needed to ensure that the DMI arising at the two interfaces does not cancel. Here we report on the magnetic properties of epitaxial Pt/Co/AuxPt1−x trilayers grown by sputtering onto sapphire substrates with 0.6 nm thick Co. As x rises from 0 to 1, a structural inversion asymmetry is progressively generated. We characterize the epilayer structure with x-ray diffraction and cross-sectional transmission electron microscopy, revealing (111) stacking. The saturation magnetization falls as the proximity magnetization in Pt is reduced, whilst the perpendicular magnetic anisotropy Ku rises. The micromagnetic DMI strength D was determined using the bubble expansion technique and also rises from a negligible value when x=0 to ∼1 mJ/m2 for x=1. The depinning field at which field-driven domain wall motion crosses from the creep to the depinning regime rises from ∼40 to ∼70 mT, attributed to greater spatial fluctuations of the domain wall energy with increasing Au concentration. Meanwhile, the increase in DMI causes the Walker field to rise from ∼10 to ∼280 mT, meaning that only in the x=1 sample is the steady flow regime accessible. The full dependence of domain wall velocity on driving field bears little resemblance to the prediction of a simple one-dimensional model, but can be described very well using micromagnetic simulations with a realistic model of disorder. These reveal a rise in Gilbert damping as x increases
Role of B diffusion in the interfacial Dzyaloshinskii-Moriya interaction in Ta / Co₂₀ Fe₆₀B₂₀/MgO nanowires
We report on current-induced domain wall motion in Ta/Co20Fe60B20/MgO nanowires. Domain walls are observed to move against the electron flow when no magnetic field is applied, while a field along the nanowires strongly affects the domain wall motion velocity. A symmetric effect is observed for up-down and down-up domain walls. This indicates the presence of right-handed domain walls, due to a Dzyaloshinskii-Moriya interaction (DMI) with a DMI coefficient D=+0.06mJ/m2. The positive DMI coefficient is interpreted to be a consequence of B diffusion into the Ta buffer layer during annealing, which was observed by chemical depth profiling measurements. The experimental results are compared to one-dimensional model simulations including the effects of pinning. This modeling allows us to reproduce the experimental outcomes and reliably extract a spin-Hall angle θSH=-0.11 for Ta in the nanowires, showing the importance of an analysis that goes beyond the model for perfect nanowires
Gender-dependent differences in plasma matrix metalloproteinase-8 elevated in pulmonary tuberculosis.
Tuberculosis (TB) remains a global health pandemic and greater understanding of underlying pathogenesis is required to develop novel therapeutic and diagnostic approaches. Matrix metalloproteinases (MMPs) are emerging as key effectors of tissue destruction in TB but have not been comprehensively studied in plasma, nor have gender differences been investigated. We measured the plasma concentrations of MMPs in a carefully characterised, prospectively recruited clinical cohort of 380 individuals. The collagenases, MMP-1 and MMP-8, were elevated in plasma of patients with pulmonary TB relative to healthy controls, and MMP-7 (matrilysin) and MMP-9 (gelatinase B) were also increased. MMP-8 was TB-specific (p<0.001), not being elevated in symptomatic controls (symptoms suspicious of TB but active disease excluded). Plasma MMP-8 concentrations inversely correlated with body mass index. Plasma MMP-8 concentration was 1.51-fold higher in males than females with TB (p<0.05) and this difference was not due to greater disease severity in men. Gender-specific analysis of MMPs demonstrated consistent increase in MMP-1 and -8 in TB, but MMP-8 was a better discriminator for TB in men. Plasma collagenases are elevated in pulmonary TB and differ between men and women. Gender must be considered in investigation of TB immunopathology and development of novel diagnostic markers
Mycobacterial trehalose dimycolate reprograms macrophage global gene expression and activates matrix metalloproteinases.
Trehalose 6,6′-dimycolate (TDM) is a cell wall glycolipid and an important virulence factor of mycobacteria. In order to study the role of TDM in the innate immune response to Mycobacterium tuberculosis, microarray analysis was used to examine gene regulation in murine bone marrow-derived macrophages in response to 90-μm-diameter polystyrene microspheres coated with TDM. A large number of genes, particularly those involved in the immune response and macrophage function, were up- or downregulated in response to these TDM-coated beads compared to control beads. Genes involved in the immune response were specifically upregulated in a myeloid differentiation primary response gene 88 (MyD88)-dependent manner. The complexity of the transcriptional response also increased greatly between 2 and 24 h. Matrix metalloproteinases (MMPs) were significantly upregulated at both time points, and this was confirmed by quantitative real-time reverse transcription-PCR (RT-PCR). Using an in vivo Matrigel granuloma model, the presence and activity of MMP-9 were examined by immunohistochemistry and in situ zymography (ISZ), respectively. We found that TDM-coated beads induced MMP-9 expression and activity in Matrigel granulomas. Macrophages were primarily responsible for MMP-9 expression, as granulomas from neutrophil-depleted mice showed staining patterns similar to that for wild-type mice. The relevance of these observations to human disease is supported by the similar induction of MMP-9 in human caseous tuberculosis (TB) granulomas. Given that MMPs likely play an important role in both the construction and breakdown of tuberculous granulomas, our results suggest that TDM may drive MMP expression during TB pathogenesis
Tuning spin–orbit torques at magnetic domain walls in epitaxial Pt/Co/Pt1−x Au x trilayers
Magnetic domain walls (DWs) in perpendicularly magnetised thin films are attractive for racetrack memories, but technological progress still requires further reduction of the operationing currents. To efficiently drive these objects by the means of electric current, one has to optimize the damping-like torque which is caused by the spin Hall effect (SHE). This not only requires a high net spin Hall angle but also the presence of a Dzyaloshinskii–Moriya interaction (DMI) to produce magnetic textures sensitive to this type of the torque. In this work, we explore the coexistence and importance of these two phenomena in epitaxial Pt/Co/Pt1−xAux films in which we control the degree of inversion symmetry-breaking between the two interfaces by varying x. Gold is used as a material with negligible induced magnetic moment and SHE and the interface between Co/Au as a source of a small DMI. We find no current-induced DW motion in the symmetric Pt/Co/Pt (x = 0) trilayer. By fitting a one-dimensional model to the DW velocity as a function of drive current density and in-plane applied field in samples with non-zero values of x, we find that both net DMI strength and spin Hall angle rise monotonically as Au is introduced. They reach values of 0.75 ± 0.05 mJ m−2 and 0.10 ± 0.01, respectively, for Pt/Co/Au (x = 1)
Recommended from our members
Spin-orbit interaction enhancement in permalloy thin films by Pt doping
The spin-orbit interaction is an inherent part of magnetism, which links up the independent world of spins to the atomic lattice, thus controlling many functional properties of magnetic materials. In the widely used 3d transition metal ferromagnetic films, the spin-orbit interaction is relatively weak, due to low atomic number. Here we show that it is possible to enhance and tune the spin-orbit interaction by adding 5d platinum dopants into permalloy (Ni81Fe19) thin films by a cosputtering technique. This is achieved without significant changes of the magnetic properties, due to the vicinity of Pt to meeting the Stoner criterion for the ferromagnetic state. The spin-orbit interaction is investigated by means of transport measurements (the anisotropic magnetoresistance and anomalous Hall effect), ferromagnetic resonance measurements to determine the Gilbert damping, as well as by measuring the x-ray magnetic circular dichroism at the L3 and L2 x-ray absorption edges to reveal the ratio of orbital to spin magnetic moments. It is shown that the effective spin-orbit interaction increases with Pt concentration within the 0%-10% Pt concentration range in a way that is consistent with theoretical expectations for all four measurements