33 research outputs found

    The WHAM Northern Sky Survey and the Nature of the Warm Ionized Medium in the Galaxy

    Full text link
    The Wisconsin H-Alpha Mapper (WHAM) has completed a velocity-resolved map of diffuse H-alpha emission of the entire northern sky, providing the first comprehensive picture of both the distribution and kinematics of diffuse ionized gas in the Galaxy. WHAM continues to advance our understanding of the physical conditions of the warm ionized medium through observations of other optical emission lines throughout the Galactic disk and halo. We discuss some highlights from the survey, including an optical window into the inner Galaxy and the relationship between HI and HII in the diffuse ISM.Comment: 9 pages, 3 figures. To be published in "How does the Galaxy work?", eds. E.J. Alfaro, E. Perez & J. Franco, Kluwer, held 23-27 June 2003 in Granada, Spain. Higher resolution version available at http://www.astro.wisc.edu/~madsen/prof/pubs.htm

    Stellar structure and compact objects before 1940: Towards relativistic astrophysics

    Full text link
    Since the mid-1920s, different strands of research used stars as "physics laboratories" for investigating the nature of matter under extreme densities and pressures, impossible to realize on Earth. To trace this process this paper is following the evolution of the concept of a dense core in stars, which was important both for an understanding of stellar evolution and as a testing ground for the fast-evolving field of nuclear physics. In spite of the divide between physicists and astrophysicists, some key actors working in the cross-fertilized soil of overlapping but different scientific cultures formulated models and tentative theories that gradually evolved into more realistic and structured astrophysical objects. These investigations culminated in the first contact with general relativity in 1939, when J. Robert Oppenheimer and his students George Volkoff and Hartland Snyder systematically applied the theory to the dense core of a collapsing neutron star. This pioneering application of Einstein's theory to an astrophysical compact object can be regarded as a milestone in the path eventually leading to the emergence of relativistic astrophysics in the early 1960s.Comment: 83 pages, 4 figures, submitted to the European Physical Journal

    Atomic X-ray Spectroscopy of Accreting Black Holes

    Full text link
    Current astrophysical research suggests that the most persistently luminous objects in the Universe are powered by the flow of matter through accretion disks onto black holes. Accretion disk systems are observed to emit copious radiation across the electromagnetic spectrum, each energy band providing access to rather distinct regimes of physical conditions and geometric scale. X-ray emission probes the innermost regions of the accretion disk, where relativistic effects prevail. While this has been known for decades, it also has been acknowledged that inferring physical conditions in the relativistic regime from the behavior of the X-ray continuum is problematic and not satisfactorily constraining. With the discovery in the 1990s of iron X-ray lines bearing signatures of relativistic distortion came the hope that such emission would more firmly constrain models of disk accretion near black holes, as well as provide observational criteria by which to test general relativity in the strong field limit. Here we provide an introduction to this phenomenon. While the presentation is intended to be primarily tutorial in nature, we aim also to acquaint the reader with trends in current research. To achieve these ends, we present the basic applications of general relativity that pertain to X-ray spectroscopic observations of black hole accretion disk systems, focusing on the Schwarzschild and Kerr solutions to the Einstein field equations. To this we add treatments of the fundamental concepts associated with the theoretical and modeling aspects of accretion disks, as well as relevant topics from observational and theoretical X-ray spectroscopy.Comment: 63 pages, 21 figures, Einstein Centennial Review Article, Canadian Journal of Physics, in pres

    A new proposal for Galactic dark matter: Effect of f(T) gravity

    Full text link
    It is still a challenging problem to the theoretical physicists to know the exact nature of the galactic dark matter which causes the galactic rotational velocity to be more or less a constant. We have proposed that the dark matter as an effect of f(T) gravity. Assuming the flat rotation curves as input we have shown that f(T) gravity can explain galactic dynamics. Here, we don' have to introduce dark matter. Spacetime metric inspired by f(T) gravity describes the region up to which the tangential velocity of the test particle is constant. This inherent property appears to be enough to produce stable circular orbits as well as attractive gravity.Comment: 7 pages and 1 figure. Minor corrections are made. Accepted for publication in Int.J.Theor.Phy

    Cluster Density and the IMF

    Full text link
    Observed variations in the IMF are reviewed with an emphasis on environmental density. The remote field IMF studied in the LMC by several authors is clearly steeper than most cluster IMFs, which have slopes close to the Salpeter value. Local field regions of star formation, like Taurus, may have relatively steep IMFs too. Very dense and massive clusters, like super star clusters, could have flatter IMFs, or inner-truncated IMFs. We propose that these variations are the result of three distinct processes during star formation that affect the mass function in different ways depending on mass range. At solar to intermediate stellar masses, gas processes involving thermal pressure and supersonic turbulence determine the basic scale for stellar mass, starting with the observed pre-stellar condensations, and they define the mass function from several tenths to several solar masses. Brown dwarfs require extraordinarily high pressures for fragmentation from the gas, and presumably form inside the pre-stellar condensations during mutual collisions, secondary fragmentations, or in disks. High mass stars form in excess of the numbers expected from pure turbulent fragmentation as pre-stellar condensations coalesce and accrete with an enhanced gravitational cross section. Variations in the interaction rate, interaction strength, and accretion rate among the primary fragments formed by turbulence lead to variations in the relative proportions of brown dwarfs, solar to intermediate mass stars, and high mass stars.Comment: 14 pages, 3 figures, to be published in ``IMF@50: A Fest-Colloquium in honor of Edwin E. Salpeter,'' held at Abbazia di Spineto, Siena, Italy, May 16-20, 2004. Kluwer Academic Publishers; edited by E. Corbelli, F. Palla, and H. Zinnecke

    Physical Processes in Star Formation

    Get PDF
    © 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/s11214-020-00693-8.Star formation is a complex multi-scale phenomenon that is of significant importance for astrophysics in general. Stars and star formation are key pillars in observational astronomy from local star forming regions in the Milky Way up to high-redshift galaxies. From a theoretical perspective, star formation and feedback processes (radiation, winds, and supernovae) play a pivotal role in advancing our understanding of the physical processes at work, both individually and of their interactions. In this review we will give an overview of the main processes that are important for the understanding of star formation. We start with an observationally motivated view on star formation from a global perspective and outline the general paradigm of the life-cycle of molecular clouds, in which star formation is the key process to close the cycle. After that we focus on the thermal and chemical aspects in star forming regions, discuss turbulence and magnetic fields as well as gravitational forces. Finally, we review the most important stellar feedback mechanisms.Peer reviewedFinal Accepted Versio

    The Physics of Star Cluster Formation and Evolution

    Get PDF
    © 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/s11214-020-00689-4.Star clusters form in dense, hierarchically collapsing gas clouds. Bulk kinetic energy is transformed to turbulence with stars forming from cores fed by filaments. In the most compact regions, stellar feedback is least effective in removing the gas and stars may form very efficiently. These are also the regions where, in high-mass clusters, ejecta from some kind of high-mass stars are effectively captured during the formation phase of some of the low mass stars and effectively channeled into the latter to form multiple populations. Star formation epochs in star clusters are generally set by gas flows that determine the abundance of gas in the cluster. We argue that there is likely only one star formation epoch after which clusters remain essentially clear of gas by cluster winds. Collisional dynamics is important in this phase leading to core collapse, expansion and eventual dispersion of every cluster. We review recent developments in the field with a focus on theoretical work.Peer reviewe

    Cytokine expression profiles of bovine lymph nodes: effects of Mycobacterium bovis infection and bacille Calmette--Guérin vaccination

    Get PDF
    corecore