76 research outputs found

    Laser Doppler velocimeter aerial spray measurements

    Get PDF
    An experimental research program for measuring the location, spatial extent, and relative concentration of airborne spray clouds generated by agricultural aircraft is described. The measurements were conducted with a ground-based laser Doppler velocimeter. The remote sensing instrumentation, experimental tests, and the results of the flight tests are discussed. The cross section of the aerial spray cloud and the observed location, extent, and relative concentration of the airborne particulates are presented. It is feasible to use a mobile laser Doppler velocimeter to track and monitor the transport and dispersion of aerial spray generated by an agricultural aircraft

    Remote measurement utilizing NASA's scanning laser Doppler systems. Volume 2: Laser Doppler dust devil velocity profile measurement program

    Get PDF
    The first detailed velocity profile data on thermally induced dust vortices are presented. These dust devils will be analyzed and studied to determine their flow fields and origin in an effort to correlate this phenomena with the generation and characteristics of tornadoes. A continuing effort to increase mankind's knowledge of vortex and other meteorological phenomena will hopefully allow the prediction of tornado occurrence, their path, and perhaps eventually even lead to some technique for their destruction

    Remote measurement utilizing NASA's scanning laser Doppler systems. Volume 1. Laser Doppler wake vortex tracking at Kennedy Airport

    Get PDF
    Test operations of the Scanning Laser Doppler System (SLDS) at Kennedy International Airport (KIA) during August 1974 through June 1975 are reported. A total of 1,619 data runs was recorded with a totally operational system during normal landing operations at KIA. In addition, 53 data runs were made during cooperative flybys with the C880 for a grand total of 1672 recorded vortex tracks. Test crews were in attendance at KIA for 31 weeks, of which 25 weeks were considered operational and the other six were packing, unpacking, setup and check out. Although average activity equates to 67 recorded landing operations per week, two periods of complete runway inactivity spanned 20 days and 13 days, respectively. The operation frequency therefore averaged about 88 operations per week

    The photoionization dynamics of the three structural isomers of dichloroethene

    Get PDF
    Using tunable vacuum-UV radiation from a synchrotron, the threshold photoelectron spectrum, threshold photoelectron photoion coincidence spectrum and ion breakdown diagram of the 1,1, cis-1,2 and trans-1,2 isomers of C2_2H2_2Cl2_2 have been recorded in the range 9-23 eV. The energies of the peaks in the threshold photoelectron spectrum are in good agreement with outer-valence Greens function caculations. The major difference between the isomers, both predicted and observed experimentally is that the F and G states of C2_2H2_2Cl2+_2^+ are approximately degenerate for 1,1 and trans-1,2, but well separated for the cis-1,2 isomer. The ground and low-lying valence states of C2_2H2_2Cl2+_2^+ are bound, with higher-lying states dissociating to C2_2H2_2Cl+^+ or C2_2H2+_2^+. The translational kinetic energy release into C2_2H2_2Cl+^+ + Cl is determined as a function of energy. Isolated-state behaviour for the low-lying electronic states of C2_2H2_2Cl2+_2^+ becomes more statistical as the energy increases

    Performance of wheat varieties, Oklahoma - 1985

    Get PDF
    The Oklahoma Cooperative Extension Service periodically issues revisions to its publications. The most current edition is made available. For access to an earlier edition, if available for this title, please contact the Oklahoma State University Library Archives by email at [email protected] or by phone at 405-744-6311

    Photo-induced enhanced Raman spectroscopy (PIERS): Sensing atomic-defects, explosives and biomolecules

    Get PDF
    Enhanced Raman relies heavily on finding ideal hot-spot regions which enable significant enhancement factors. In addition, the termed “chemical enhancement” aspect of SERS is often neglected due to its relatively low enhancement factors, in comparison to those of electromagnetic (EM) nature. Using a metal-semiconductor hybrid system, with the addition of induced surface oxygen vacancy defects, both EM and chemical enhancement pathways can be utilized on cheap reusable surfaces. Two metal-oxide semiconductor thin films, WO3 and TiO2, were used as a platform for investigating size dependent effects of Au nanoparticles (NPs) for SERS (surface enhanced Raman spectroscopy) and PIERS (photo-induced enhanced Raman spectroscopy – UV pre-irradiation for additional chemical enhancement) detection applications. A set concentration of spherical Au NPs (5, 50, 100 and 150 nm in diameter) was drop-cast on preirradiated metal-oxide substrates. Using 4-mercaptobenzoic acid (MBA) as a Raman reporter molecule, a significant dependence on the size of nanoparticle was found. The greatest surface coverage and ideal distribution of AuNPs was found for the 50 nm particles during SERS tests, resulting in a high probability of finding an ideal hot-spot region. However, more significantly a strong dependence on nanoparticle size was also found for PIERS measurements – completely independent of AuNP distribution and orientation affects – where 50 nm particles were also found to generate the largest PIERS enhancement. The position of the analyte molecule with respect to the metal-semiconductor interface and position of generated oxygen vacancies within the hot-spot regions was presented as an explanation for this result

    A selected ion flow tube study of the ion-molecule reactions of monochloroethene, trichloroethene and tetrachloroethene

    Get PDF
    Data for the rate coefficients and product cations of the reactions of a large number of atomic and small molecular cations with monochloroethene, trichloroethene and tetrachloroethene in a selected ion flow tube at 298 K are reported. The recombination energy of the ions range from 6.27 eV (H3_3O+^+) through to 21.56 eV (Ne+^+). Collisional rate coefficients are calculated by modified average dipole orientation theory and compared with experimental values. Thermochemistry and mass balance predict the most feasible neutral products. Together with previously reported results for the three isomers of dichloroethene (J. Phys. Chem. A., 2006, 110, 5760), the fragment ion branching ratios have been compared with those from threshold photoelectron photoion coincidence spectroscopy over the photon energy range 9-22 eV to determine the importance or otherwise of long-range charge transfer. For ions with recombination energy in excess of the ionisation energy of the chloroethene, charge transfer is energetically allowed. The similarity of the branching ratios from the two experiments suggest that long-range charge transfer is dominant. For ions with recombination energy less than the ionisation energy, charge transfer is not allowed; chemical reaction can only occur following formation of an ion-molecule complex, where steric effects are more significant. The products that are now formed and their percentage yield is a complex interplay between the number and position of the chlorine atoms with respect to the C=C bond, where inductive and conjugation effects can be important

    A Halomethane thermochemical network from iPEPICO experiments and quantum chemical calculations

    Get PDF
    Internal energy selected halomethane cations CH3Cl+, CH2Cl2+, CHCl3+, CH3F+, CH2F2+, CHClF2+ and CBrClF2+ were prepared by vacuum ultraviolet photoionization, and their lowest energy dissociation channel studied using imaging photoelectron photoion coincidence spectroscopy (iPEPICO). This channel involves hydrogen atom loss for CH3F+, CH2F2+ and CH3Cl+, chlorine atom loss for CH2Cl2+, CHCl3+ and CHClF2+, and bromine atom loss for CBrClF2+. Accurate 0 K appearance energies, in conjunction with ab initio isodesmic and halogen exchange reaction energies, establish a thermochemical network, which is optimized to update and confirm the enthalpies of formation of the sample molecules and their dissociative photoionization products. The ground electronic states of CHCl3+, CHClF2+ and CBrClF2+ do not confirm to the deep well assumption, and the experimental breakdown curve deviates from the deep well model at low energies. Breakdown curve analysis of such shallow well systems supplies a satisfactorily succinct route to the adiabatic ionization energy of the parent molecule, particularly if the threshold photoelectron spectrum is not resolved and a purely computational route is unfeasible. The ionization energies have been found to be 11.47 ± 0.01 eV, 12.30 ± 0.02 eV and 11.23 ± 0.03 eV for CHCl3, CHClF2 and CBrClF2, respectively. The updated 0 K enthalpies of formation, ∆fHo0K(g) for the ions CH2F+, CHF2+, CHCl2+, CCl3+, CCl2F+ and CClF2+ have been derived to be 844.4 ± 2.1, 601.6 ± 2.7, 890.3 ± 2.2, 849.8 ± 3.2, 701.2 ± 3.3 and 552.2 ± 3.4 kJ mol–1, respectively. The ∆fHo0K(g) values for the neutrals CCl4, CBrClF2, CClF3, CCl2F2 and CCl3F and have been determined to be –94.0 ± 3.2, –446.6 ± 2.7, –702.1 ± 3.5, –487.8 ± 3.4 and –285.2 ± 3.2 kJ mol–1, respectively

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
    corecore