
SANDIA REPORT
SAND2007-2761
Unlimited Release
Printed April 2007

A Taxonomy and Comparison of
Parallel Block Multi-level
Preconditioners for the
Incompressible Navier–Stokes
Equations †

Howard Elman, Victoria E. Howle, John Shadid, Robert Shuttleworth,
Ray Tuminaro

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNT Digital Library

https://core.ac.uk/display/71320224?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia
Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government, nor any agency thereof, nor any of their employees,
nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied,
or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any infor-
mation, apparatus, product, or process disclosed, or represent that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government, any agency thereof, or any of their contractors
or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of
the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available
copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
EP

ARTMENT OF ENERG
Y

• •U
N

IT
ED

STATES OF AM

ER
IC

A

2

SAND2007-2761

Unlimited Release
Printed April 2007

A Taxonomy and Comparison of Parallel Block M ulti-lwel
Preconditionersfor the 1 ncompressible NavierStokes

Equations

Howard Elman Victoria E. Howle John Shadid I Robert Shuttleworth **

Ray Tuminaro tt

In recent years, considerable effoR has been placed on developing efficient and robust solution algorithms for
the incompressible Navier-Stokes equations based on preconditioned Krylov methods. These include physics-
based methods. such as SIMPLE. and ourelv aleebraic oreconditioners based on the aovroximation of the Schur . , u .A

complement. All these techniques can be represented as approximate block factorization (ABF) type precon-
ditioners. The goal is to decompose the application of the preconditioner into simplified sub-systems in which
scalable multi-level type solvers can be applied. In this paper we develop a taxonomy of these ideas based on an
adaptation of a generalized approximate factorization of the Navier-Stokes system first presented in [25]. This
taxonomv illuminates the similarities and differences amone these oreconditioners and the central role olaved bv - . , ,
efficient approximation of certain Schur complement operators. We then present a parallel computational study
that examines the performance of these methods and compares them to an additive Schwarz domain decompo-
sition (DD) algorithm. Results are presented for two and three-dimensional steady state problems for enclosed
domains and inflowloutflow systems on both structured and unstructured meshes. The numerical experiments
are performed using MPSalsa, a stabilized finite element code.

'This work was partially supported by the DOE Office of Science MICS Program and by the ASC Program at Sandia National Laboratories.
Sandia is a multinronram laboratory onerated by Sandia Cornoration, a Lockheed Martin Comnanv. for the United States Denartmerit of

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Depament of
Energy's National Nuclear Security Administration under contract DE-AC04-94AL850M).

*This work was partially supported by the DOE Office of Science MICS Program and by the ASC Program at Sandia National Laboratories.
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of
Energy's National Nuclear Security Adminisvation under contract DE-AC04-94AL85000.

bepartment of Computer Science and Institute for Advanced Computer Studies, University of Maryland, College Park, MD 20742,
elman@cs. umd. edu. The work of this author was supported by the Department of Energy under grant DOEG0204ER25619.

ISandia National Laboratories, PO Box 969, MS 9159 Livemore, CA 94551, vehoule@sandia.gov.
ll~andia National Laboratories, PO Box 5800. MS 1111. Albuquerque. NM 87185. jnshadi@cs .sandia.gov.

"'Aoolied Mathematics and Scientific Comoutine hoeram and Center for Scientific Comoutation and Mathematical Modeline. Univenitv
of h 1 q imd. l'ollzpr. t'.*rk. \11) 211742 rshutrleCo nsth wrd. edu

' >111&111 N.111on31 I 3honl,?r1c,. PO lloh L16cJ h l S ,459 , I i n e n ~ ~ o r ~ I ' \ 9-1551 rstunlnv sand1a.gov

4

1 Introduction

Current leading-edge engineering and scientific flow simulations often entail complex two and three-dimensional
geometries with high resolution unstructured meshes to capture all the relevant length scales of interest. After
suitable discretization and linearization these simulations can produce large linear systems of equations with on the
order 105 to 108 unknowns. As a result, efficient and scalable parallel iterative solution methods are required. We
consider solution methods for the incompressible Navier-Stokes equations where the equations below represent
conservation of momentum and mass, and the constitutive equation for the Newtonian stress tensor,

Momentum: ρ(u ·∇)u = ∇ ·T+ρg
Mass: ∇ ·u = 0

Stress Tensor: T = −PI+ µ(∇u+∇uT)
(1)

in Ω ⊂ R
d(d = 2 or 3). Here the velocity, u, satisfies suitable boundary conditions on ∂Ω, P represents the

hydrodynamic pressure, ρ the density, µ the dynamic viscosity, and g the body forces.

We focus on solution algorithms for the algebraic system of equations that result from linearization and dis-
cretization of these equations. The coefficient matrices have the general form

A =

(

F BT

B̂ −C

)

. (2)

The strategies we employ for solving (2) are derived from the LDU block factorization of this coefficient matrix,

A =

(

I 0
B̂F−1 I

)(

F 0
0 −S

)(

I F−1BT

0 I

)

, (3)

where
S = C + B̂F−1BT (4)

is the Schur complement (of F in A). They require methods for approximating the action of the inverse of the
factors of (3), which, in particular, requires approximation to the actions of F−1 and S−1. For large-scale com-
putations, use of the exact Schur complement is not feasible. Therefore effective approximate block factorization
(ABF) preconditioners are often based on a careful consideration of the spectral properties of the component
block operators and the approximate Schur complement operators. There has been a great deal of recent work
on ABF methods (e.g. [3, 4, 6, 8, 17]). These techniques take a purely linear algebraic view of precondition-
ing. Through these decompositions a simplified system of block component equations is developed that encodes
a specific “physics-based” decomposition. Alternatively, one could start with “physics-based” iterative solution
methods for the Navier-Stokes equations (e.g. [21, 22]) and develop preconditioners based on these techniques
as described in [18]. In both these cases, the system has been transformed by the factorization into component
systems that are essentially convection-diffusion and Poisson type operators. The result is a system to which
multi-level methods, and in our particular case, algebraic multi-level methods (AMG) can be applied successfully
for parallel unstructured mesh simulations.

In this paper, we include preconditioners developed from iterative solution strategies based on pressure correc-
tion methods, like SIMPLE, proposed by Patankar and Spaulding [22] and previously studied as a preconditioner
by Pernice and Tocci in [23]. We interpret these methods in the context of our taxonomy and compare them with
some new “approximate commutator methods.” These techniques are based on the approximation of the Schur
complement operator by a technique proposed by Kay, Loghin, Wathen [17], Silvester, Elman, Kay, Wathen [30],
and Elman, Howle, Shadid, Shuttleworth, and Tuminaro [10].

The paper is organized as follows. Section 2 gives a brief description of the Newton iteration and provides
an overview of the discretization and resulting coefficient matrix used for our numerical experiments. Section 3

5

presents a taxonomy for classifying the approximate block preconditioners. Section 4 provides a brief overview
of the parallel implementation of the nonlinear and linear solvers. Details of the numerical experiments and the
results of these experiments are described in Section 5. Concluding remarks are provided in Section 6.

6

2 Background

Our focus is on solution algorithms for the systems of equations that arise after discretization and linearization of
the system (1). A nonlinear iteration based on an inexact Newton-Krylov method is used to solve this problem. If
the nonlinear problem to be solved is written as G(x) = 0, where G : R

n → R
n, then at the kth step of Newton’s

method, the solution of the linear Newton equation

J(xk)sk = −g(xk) (5)

is required, where xk is the current solution and J(xk) denotes the Jacobian matrix of G at xk. Once the Newton
update, sk, is determined, the current approximation is updated via

xk+1 = xk + sk.

Newton-Krylov methods [7] relax the requirement to compute an exact solution to (5). Instead, a Krylov subspace
method, such as GMRES, is applied until an iterate sk is found that satisfies the inexact Newton condition,

‖g(xk)+ J(xk)sk‖ ≤ ηk‖g(xk)‖, (6)

where, ηk ∈ [0,1], is a tolerance. If ηk = 0, this is an exact Newton method. For a discussion of the merits of
different choices of ηk, see [7]. For this computational study, ηk is chosen to be a constant and our attention is
focused on preconditioning methods for use with GMRES solving for the Newton update.

For the discrete Navier-Stokes equations, the Jacobian system at the kth step that arises from Newton’s method
is

(

F BT

B̂ −C

)(

∆uk
∆pk

)

=

(

gk
u

gk
p

)

, (7)

where F is a convection-diffusion-like operator, BT is the gradient operator, B̂ is the divergence operator that for
some higher-order stabilized formulations can include a contribution from non-zero higher-order derivative oper-
ators in the stabilized formulation [5], and C is the operator that stabilizes the finite element discretization. The
right hand side vector, (gu,gp)

T , contains respectively the nonlinear residual for the momentum and continuity
equations. This Newton procedure starts with some initial iterate u0 for the velocities, p0 for the pressure; then
updates for the velocities and pressures are computed by solving the Newton equations (7). Further details on the
particular discretization used in our experiments can be found in Section 4.

All of the methods we describe in Section 3 generate some approximation, Ã, to the Jacobian system found
in (5). Some of the methods considered in this paper have been traditionally derived as stationary iterative solvers,
and we use this mode of description in parts of the paper. That is, for

Au = f (8)

stationary iterations have the form
un+1 = un + Ã−1(f−Aun)

where Ã is a Jacobian approximation, A = Ã−E, and un is the approximate solution at the nth iteration. All of
our experiments use the splitting operators as preconditioners in a Krylov subspace method.

7

3 Taxonomy of Approximate Block Factorization Preconditioners

We adopt a nomenclature developed by Quarteroni, Saleri, and Veneziani [25] for algebraic splittings of A for
projection type methods. Let H1 represent an approximation to F−1 in the Schur complement (4) and let H2
be an approximation to F−1 in the upper triangular block of the factorization (3). This results in the following
decomposition:

As =

[

I 0
B̂F−1 I

][

F 0
0 −(C + B̂H1BT)

][

I H2BT

0 I

]

=

[

F FH2BT

B̂ −(C + B̂(H1 −H2)BT)

]

. (9)

The error matrix, Es = A−As is
Es =

[

0 (I −FH2)BT

0 −B̂(H2 −H1)BT

]

.

This decomposition is used in [25] to illuminate the structure of several projection techniques for solving the
time-dependent Navier-Stokes equations. By examining the error, we can determine which equation (momentum
or continuity) in the original problem is perturbed by the approximations H1 or H2. in the above decomposition.
For example, if H1 = F−1 and H1 6= H2, then the operators applied to the pressure in both the momentum equation
and continuity equation are perturbed, whereas operators applied to the velocity are not perturbed. On the other
hand, if H2 = F−1 and H1 6= H2, then the (1,2) block of the error matrix is zero. So, the momentum equation
is unperturbed, thus giving a “momentum preserving strategy,” whereas a perturbation of the incompressibility
constraint occurs [25]. If H1 = H2 6= F−1, then the scheme is “mass preserving” because the (2,2) block of
the error matrix is zero, so the continuity equation is not modified. Finally, if H1 6= H2 6= F−1, then both the
momentum and continuity equations are modified.

The above factorization can be generalized to incorporate “classical” methods used for these problems such as
SIMPLE, SIMPLEC, SIMPLER, [22, 23], as well as newer approximate commutator methods devised to generate
good approximatations to the Schur complement [17, 30]. Let us modify (9) using some approximation H1 in place
of F−1 in the lower triangular block. In addition, let Ŝ represent an approximation of the Schur complement. This
gives

Ã =

[

I 0
B̂H1 I

][

F 0
0 −Ŝ

][

I H2BT

0 I

]

=

[

F FH2BT

B̂H1F B̂H1FH2BT − Ŝ

]

. (10)

The error, denoted Ẽ = A− Ã, is

Ẽ =

[

0 BT −FH2BT

B̂− B̂H1F Ŝ− (C + B̂H1FH2BT)

]

.

Techniques explored in this study can be classified into two categories: those whose factorization groups the
lower triangular and the diagonal components as [(LD)U], and those that group the diagonal and lower triangular
components as [L(DU)]. Methods with the (LD)U grouping have the factorization

Ã(LD)U =

[

F 0
B̂H1F −Ŝ

][

I H2BT

0 I

]

. (11)

Methods with the L(DU) grouping have the factorization

ÃL(DU) =

[

I 0
B̂H1 I

][

F FH2BT

0 −Ŝ

]

. (12)

Some of the techniques considered do not use the complete factorization (11) or (12), but rather use only triangular
components of the factorization. SIMPLE uses the block (LD)U grouping. The approximate commutator methods
are derived from the block L(DU) grouping and use just the diagonal and upper triangular (DU) components in
the method. Finally, these classifications are further refined by specifying strategies for approximating the Schur
complement.

8

3.1 Pressure Correction

The pressure correction family of Navier-Stokes preconditioners is derived from the divergence free constraint
with decoupling of the incompressible Navier-Stokes equations. In the following sections, three pressure cor-
rection methods are derived, SIMPLE (Semi-Implicit Method for Pressure Linked Equations), SIMPLEC, and
SIMPLER (Semi-Implicit Method for Pressure Linked Equations Revised) [22, 23, 24].

3.1.1 The SIMPLE Preconditioner

The SIMPLE-like algorithm described here begins by solving a variant of the momentum equation for an interme-
diate velocity using a previously generated pressure; then the continuity equation is solved using the intermediate
velocity to calculate the pressure update. This value is used to update the velocity component. The SIMPLE
algorithm expressed as a stationary iteration is as follows:

1. Solve: Fun+ 1
2

= f −BT pn for the velocity, u.

2. Solve: −(C + B̂diag(F)−1BT)δ p = B̂un+ 1
2
+Cpn for δ p.

3. Calculate the velocity correction: δu = un+1 −un+ 1
2

= (−diag(F)−1BT)δ p.

4. Update the pressure: pn+1 = pn +αδ p

5. Update the velocity: un+1 = un+ 1
2
+δu

The quantity α is a parameter in (0,1] that damps the pressure update.

An alternative derivation is obtained using the LDU framework described above. The block lower triangular
factor (L) and the block diagonal (D) are grouped together. In terms of the taxonomy described above, this
corresponds to the choices H1 = F−1, H2 =(diag(F))−1, and Ŝ =C+ B̂(diag(F))−1BT in (11). The decomposition
is

[

F BT

B̂ −C

]

≈

[

I 0
B̂F−1 I

][

F 0
0 Ŝ

][

I (diag(F))−1BT

0 αI

]

=

[

F 0
B̂ −Ŝ

][

I (diag(F))−1BT

0 αI

]

= ÃSIMPLE .

Thus, one iteration of SIMPLE corresponds to
[

un+1
pn+1

]

=

[

un

pn

]

+ Ã−1
SIMPLE

([

f
0

]

−A

[

un

pn

])

where A is defined in (2).

The error for this method (when α = 1) is

ESIMPLE = A− ÃSIMPLE =

[

0 BT −F(diag(F))−1BT

0 0

]

.

SIMPLE does not affect the terms that operate on the velocity, but it perturbs the pressure operator in the momen-
tum equation. This results in a method that is “mass preserving.” When diag(F)−1 is a good approximation to
F−1, then ESIMPLE is close to a zero matrix, so this method generates a very close approximation to the original
Jacobian system. From our computational experiments in Section 5, we have found that the diagonal approxi-
mation can yield poor results because the diagonal approximation does not capture enough information about the
convection operator.

9

3.1.2 The SIMPLEC Preconditioner

The SIMPLEC algorithm is a variant of SIMPLE [23]. It replaces the diagonal approximation of the inverse of F
with the diagonal matrix whose entries contain the absolute value of the row sums of F . The matrix structure is
the same (LD)U as that of SIMPLE. The symbol ∑(|F |) denotes a matrix whose entries are equal to the absolute
value of the row sum of F . With the choices H1 = F−1, H2 = (∑ |F |)−1, and Ŝ =C+ B̂(∑ |F |)−1BT , the SIMPLEC
method can be expressed in terms of the block factorization (11). The decomposition is

[

F BT

B̂ −C

]

≈

[

F 0
B̂ −Ŝ

][

I (∑(|F |)−1BT

0 αI

]

= ÃSIMPLEC

where Ŝ = C + B̂(∑ |F |)−1BT . The error for this method (when α = 1 is

ESIMPLEC = A− ÃSIMPLEC =

[

0 BT −F(∑ |F |)−1BT

0 −B̂(∑ |F |)−1BT + B̂F−1BT

]

.

This method perturbs the pressure operator in both the momentum and continuity equations. The choice of the
absolute value of the row sum tends to provide a better approximation to the matrix F , therefore reducing the error
associated with this method [23]. We have found that this choice works reasonably well and is easy to construct.
Further variations of this class of methods can be determined by choosing different approximations to F−1, such
as sparse approximate inverses. For our computational results in Section 5, we use the absolute value of the row
sum.

3.1.3 The SIMPLER Preconditioner

The SIMPLER algorithm is very similar to SIMPLE, except that it first determines p̂n+1 using un, then it calculates
an intermediate velocity value, un+ 1

2
. This intermediate velocity is projected to enforce the continuity equation,

which determines un+1. The steps required are as follows:

1. Solve: (C + B̂diag(F)−1BT)p̂n+1 = −B̂diag(F)−1(f +Fun −BT pn) for the pressure, p̂n+1.

2. Solve: Fun+ 1
2

= f −BT (p̂n+1 − pn) for the velocity, u.

3. Project un+ 1
2

to obtain un+1 by: [I +(diag(F)−1)−1B̂(C +Bdiag(F)−1BT)−1BT)]un+ 1
2

4. Update the pressure: pn+1 = α p̂n+1

Once again, α is a parameter in (0,1] that damps the pressure update. SIMPLER can also be expressed using the
LDU framework. The block diagonal (D) and the block upper triangular (U) factors are grouped together and an
additonal matrix, P, a projection matrix for the velocity projection in step 3, is added to the factorization.

In terms of the taxonomy, this corresponds to the choices of H1 = diag (F)−1, H2 = F−1, and Ŝ = C +
B̂diag(F)−1BT in (12). Then

[

F BT

B̂ −C

]

≈

[

I 0
B̂F−1 I

][

F BT

0 S

]

≈

[

I 0
B̂(diag(F))−1 I

][

F BT

0 −Ŝ

]

10

where Ŝ = C + B̂(diag(F))−1BT . Now, the projection matrix is added to give the SIMPLER algorithm in matrix
form. This results in

ÃSIMPLER =

[

I +(diag(F))−1B̂Ŝ−1BT 0
0 αI

][

I 0
B̂(diag(F))−1 I

][

F BT

0 −Ŝ

]

(13)

[23]. Thus, one iteration of SIMPLER corresponds to
[

un+1
pn+1

]

=

[

un

pn

]

+ Ã−1
SIMPLER

([

f
0

]

−A

[

un

pn

])

where A is defined in and ÃSIMPLER is defined in (13). The use of the projection matrix, which has subsidiary
solves that must be performed to very high accuracy, greatly degrades the performance of this method when
compared to SIMPLE. However, the projection matrix is needed to enforce the continuity equation, and therefore
produce a solution that is divergence free [23]. This method perturbs the pressure operator in both the momentum
and continuity equations.

3.1.4 Remarks on Pressure Correction Methods

In this section, the pressure correction methods (SIMPLE/SIMPLEC) that begin with the underlying factorization,
(LD)U and use approximations to the components of the factors to define the preconditioner have been given.
SIMPLER is based on the decomposition L(DU) with approximations to P−1(DU)−1L−1 as the preconditioner.
These methods are useful for steady state flow problems. However, these methods tend to converge slowly and
require the user to input a relaxation parameter to improve convergence.

3.2 Approximate Commutator Methods

The pressure convection-diffusion preconditioners group together the diagonal and upper triangular factors and
omit the lower triangular factor. Let H1 = H2 = F−1. Then the block factorization of the coefficient matrix is

(

F BT

B̂ −C

)

=

(

I 0
B̂H1 I

)(

F FH2BT

0 −S

)

=

(

I 0
B̂F−1 I

)(

F BT

0 −S

)

. (14)

where the diagonal (D) and upper triangular (U) factors are grouped together. For our computations, we only use
the upper triangular factor, and replace the Schur complement S by some approximation Ŝ (to be specified later).
The efficacy of this strategy can be seen by analyzing the following generalized eigenvalue problem:

(

F BT

B̂ −C

)(

u
p

)

= λ
(

F BT

0 Ŝ

)(

u
p

)

.

If Ŝ is the Schur complement, then all the eigenvalues of the preconditioned matrix are identically one. This oper-
ator contains Jordan blocks of dimension at most 2, and consequently at most two iterations of a preconditioned
GMRES iteration would be needed to solve the system [20].

We motivate the Approximate Commutator Methods by examining the computational issues associated with
applying this preconditioner Q in a Krylov subspace iteration. At each step, the application of Q−1 to a vector is
needed. By expressing this operation in factored form,

(

F BT

0 −S

)−1
=

(

F−1 0
0 I

)(

I −BT

0 I

)(

I 0
0 −S−1

)

11

two potentially difficult operations can be seen: S−1 must be applied to a vector in the discrete pressure space, and
F−1 must be applied to a vector in the discrete velocity space. The application of F−1 can be performed relatively
cheaply using an iterative technique, such as multigrid. However applying S−1 to a vector is too expensive. An
effective preconditioner can be built by replacing this operation with an inexpensive approximation. We discuss
three preconditioning strategies, the pressure convection-diffusion (P-CD), the Least Squares Commutator (LSC),
and the approximate SIMPLE commutator (ASC).

3.2.1 The Pressure Convection-Diffusion Preconditioner

Pressure convection-diffusion
preconditioners take a fundamentally different approach to approximate the inverse Schur complement than SIM-
PLE. The basic idea hinges on the notion of an approximate commutator. Consider a discrete version of the
convection-diffusion operator

(ν∇2 +(w ·grad)). (15)
where w is a constant vector. When w is an approximation to the velocity obtained from the previous nonlinear
step, (15) is an Oseen linearization of the nonlinear term in (1). Suppose there is an analogous operator defined
on the pressure space,

(ν∇2 +(w ·grad))p.

Consider the commutator of these operators with the gradient:

ε = (ν∇2 +(w ·grad))∇−∇(ν∇2 + (w ·grad))p. (16)

Supposing that ε is small, multiplication on both sides of (16) by the divergence operator gives

∇2(ν∇2 +(w ·grad))−1
p ≈ ∇ · (ν∇2 + (w ·grad))−1∇ (17)

In discrete form, using finite elements, this usually takes the form

(Q−1
p Ap)(Q

−1
p Fp)

−1 ≈ (Q−1
p B)(Q−1

v F)−1(Q−1
v BT)

ApF−1
p ≈ Q−1

p (BF−1BT)

where here F represents a discrete convection-diffusion operator on the velocity space, Fp is the discrete convection-
diffusion operator on the pressure space, Ap is a discrete Laplacian operator, Qv the velocity mass matrix, and Qp

is the lumped pressure mass matrix. This suggests the approximation for the Schur complement

S ≈ Ŝ = ApF−1
p Qp (18)

for a stable finite element discretization when C = 0. In the case of our pressure stabilized finite element dis-
cretizations, the same type of approximation is required [8]:

S = C + B̂F−1BT ≈ ApF−1
p Qp. (19)

Applying the action of the inverse of ApF−1
p Qp to a vector requires solving a system of equations with a discrete

Laplacian operator, then multiplication by the matrix Fp, and solving a system of equations with the pressure mass
matrix. In practice, Qp can be replaced by its lumped approximation with little detoriation of effectiveness. Both
the convection-diffusion-like system, F , and the Laplace system, Ap, can also be handled using multigrid with
little deterioration of effectiveness.

In our taxonomy, the pressure convection-diffusion method is generated by grouping together the upper trian-
gular and diagonal factors as in (12), choosing H2 = F−1 and Ŝ as in (19). In matrix form this is

ÃPCD =

[

F FH2BT

0 −Ŝ

]

=

[

F BT

0 −ApF−1
p Qp.

]

.

12

The error matrix is

EPCD = A− ÃPCD =

[

0 0
0 −ApF−1

p Qp +C− B̂F−1BT

]

,

which shows that the momentum equation is unperturbed and only the pressure operator in the continuity equation
is perturbed by this method, thus giving a “momentum preserving” strategy.

Considerable empirical evidence for two and three-dimensional problems indicates that this preconditioning
strategy is effective, leading to convergence rates that are independent of mesh size and mildly dependent on
Reynolds numbers for steady flow problems [9, 12, 17, 30]. A proof that convergence rates are independent of
the mesh is given in [19]. One drawback is the requirement that the matrix Fp be constructed. There might be
situations where a developer of a solver does not have access to the code that would be needed to construct Fp.
This issue is addressed in the next section.

3.2.2 The Least Squares Commutator Preconditioner

The Least Squares Commutator method automatically generates an Fp matrix by solving the normal equations
associated with a certain least squares problem derived from the commutator [10]. This approach leads to the
following definition of Fp:

Fp = Qp(B̂Q−1
v BT)−1(B̂Q−1

v FQ−1
v BT). (20)

Substitution of the operator into (19) generates an approximation to the Schur complement for div-stable finite
element discretizations (i.e. C = 0):

B̂F−1BT ≈ (B̂Q−1
v BT)−1(B̂Q−1

v FQ−1
v BT)−1(BQ−1

v BT). (21)

For stabilized finite element discretizations, this can be modified to

C + B̂F−1BT ≈ (B̂Q−1
v BT + γC)−1(B̂Q−1

v FQ−1
v BT)(B̂Q−1

v BT + γC)−1 +αD−1 (22)

where α , and β are scaling factors, and D is the diagonal of (B̂diag(F)−1BT +C). For a further discussion of the
merits of this method including heuristics for generating α and β , see [11].

In the taxonomy, the LSC operator is generated by grouping together the upper triangular and diagonal factors
as in (12), choosing H2 = F−1 and Ŝ as in (22). In matrix form this is

ALSC = =

[

F FH2BT

0 −Ŝ

]

=

[

F BT

0 (B̂Q−1
v BT + γC)(B̂Q−1

v FQ−1
v BT)−1(B̂Q−1

v BT + γC)+αD

]

.

The error matrix is

ELSC = A− ÃLSC

=

[

0 0
0 (B̂Q−1

v BT + γC)(B̂Q−1
v FQ−1

v BT)−1(B̂Q−1
v BT + γC)+αD−C− B̂F−1BT

]

,

so that the momentum equation is again unperturbed. Empirical evidence indicates that this strategy is effective,
leading to convergence rates that are mildly dependent on Reynolds numbers for steady flow problems [12, 30].

13

3.2.3 The Approximate SIMPLE Commutator Preconditioner

In this section, we define an alternative strategy that uses the same factors as SIMPLE, together with the commu-
tator used to derive the P-CD and LSC factorizations. This results in a “mass preserving” strategy. In terms of
the taxonomy, this method is generated by grouping together the lower triangular and diagonal factors, choosing
H1 = F−1 and Ŝ = C + B̂diag(F)−1BT F−1

p . Insertion of the choices into (12) leads to

AASC =

[

F BT

B̂ −C

]

=

[

F 0
B̂H1F −Ŝ

][

I H2BT

0 I

]

=

[

F 0
B̂ −(C + B̂diag(F)−1BT F−1

p)

][

I H2BT

0 I

]

.

We can approximate H2BT in the upper triangular factor by diag(F)−1BT F−1
p . In matrix form this becomes

AASC =

[

F BT

B̂ −C

]

=

[

F 0
B̂ −(C + B̂diag(F)−1BT F−1

p)

][

I diag(F)−1BT F−1
p

0 I

]

.

The error matrix is

EASC = A− ÃASC

=

[

0 BT −Fdiag(F)−1BT F−1
p

0 0

]

.

Here the continuity equation is unperturbed. This method performs well when the error in the (1,2) block is small.
More details on the method with a further discussion of how this method compares to SIMPLE can be found in
[10].

14

4 Implementation and Testing Environment

We have tested the methods discussed above using MPSalsa [26], a code developed at Sandia National Laboratory,
that models chemically reactive, incompressible fluids. The discretization of the Navier-Stokes equations provided
by MPSalsa is a pressure stabilized, streamline upwinded Petrov Galerkin finite element scheme [31] with Q1-Q1
elements. One advantage of equal order interpolants is that the velocity and pressure degrees of freedom are
defined at the same grid points, so the same interpolants for both velocity and pressure are used.

4.1 Problem and Preconditioner Structure

The nonlinear system is solved by Newton’s method where the structure of a two-dimensional steady version of
F is a 2×2 block matrix consisting of a discrete version of the operator

(

−ν∆+u(n−1) ·∇+(u(n−1)
1)x (u(n−1)

1)y

(u(n−1)
2)x −ν∆+u(n−1) ·∇+(u(n−1)

2)y

)

. (23)

For the pressure convection-diffusion preconditioning strategy, we need to specify the operators Fp, Ap, and Qp.
These operators are generated using the application code, MPSalsa. For the Ap operator required by this strategy,
we choose it by taking 1/ν times the symmetric part of Fp. This generates a Laplacian type operator suitable
for the use in this preconditioning strategy. For Qp, we use a lumped version of the pressure mass matrix. For
problems with inflow boundary conditions, we specify Dirichlet boundary conditions on the inflow boundary
for all of the preconditioning operators [8]. For singular operators found in problems with enclosed flow, the
hydrostatic pressure makes BT and the Jacobian system rank-deficient by one. Since we are given a Jacobian
matrix from MPSalsa that is “pinned,” i.e. a row and column that is causing the rank deficiency is removed, we
pin all of the operators in the preconditioner (Fp,Ap,Qp) as the Jacobian matrix is pinned. The other methods (i.e.
SIMPLE, LSC) in this study were built as described in Section 3.

One aspect of the block preconditioners discussed here is that they require two subsidiary scalar computations,
solutions for the Schur complement approximation and convection-diffusion-like subproblem. Both of these
computations are amenable to multigrid methods. We employ smoothed aggregation algebraic multigrid (AMG)
for these computations because AMG does not require mesh or geometric information, and thus is attractive for
problems posed on complex domains or unstructured meshes. More details on AMG can be found in [32, 34].

4.2 Software

Our implementation of the preconditioned Krylov subspace solution algorithm uses Trilinos [16], a software
environment developed at Sandia National Laboratories for implementing parallel solution algorithms using a
collection of object-oriented software packages for large-scale, parallel multiphysics simulations. One advantage
of using Trilinos is its capability to seamlessly use component packages for core operations. We use the following
components of Trilinos:

1. Meros - This package provides scalable block preconditioning for problems with coupled simultaneous
solution variables. Both the pressure convection-diffusion and SIMPLE preconditioner studied here are
implemented in this package. Meros uses the Epetra package for basic linear algebra functions.

2. Epetra - This package provides the fundamental routines and operations needed for serial and parallel lin-
ear algebra libraries. Epetra also facilitates matrix construction on parallel distributed machines. Each

15

processor constructs the subset of matrix rows assigned to it via the static domain decomposition partition-
ing generated by a stand-alone library, CHACO [15], and a local matrix-vector product is defined. Epetra
handles all the distributed parallel matrix details (e.g. local indices versus global indices, communication
for matrix-vector products, etc.). Once the matrices F , B, B̂, and C are defined, a global matrix-vector
product for (7) is defined using the matrix-vector products for the individual systems. Construction of the
preconditioner follows in a similar fashion.

3. AztecOO - This package is a massively parallel iterative solver library for sparse linear systems. It supplies
all of the Krylov methods used in solving (7), the F , and Schur complement approximation subsystems.

4. ML - This is a multilevel algebraic multigrid preconditioning package. We use this package with AztecOO
to solve the F and Schur complement approximation subsystems.

5. NOX - This is a package for solving nonlinear systems of equations. We use NOX for the inexact nonlinear
Newton solver.

4.3 Operations Required

Once all of the matrices and matrix-vector products are defined, we can use Trilinos to solve the incompressible
Navier–Stokes equations using our block preconditioner with specific choices of linear solvers for the Jacobian
system and the convection–diffusion and Schur complement approximation subproblems.

For solving the system with coefficient matrix F we use the generalized minimal residual method (GMRES)
preconditioned with four levels of algebraic multigrid, and for the pressure Poisson problem, we use the conju-
gate gradient method (CG) preconditioned with four levels of algebraic multigrid. For the convection-diffusion
problem, a block Gauss Seidel (GS) smoother is used and for the pressure Poisson problem, a multilevel smoother
polynomial is used for the smoothing operations [1]. The block GS smoother is a domain-based Gauss Seidel
smoother where the diagonal blocks of the matrix (the velocity components) correspond to subdomains, and a
traditional point GS sweep occurs in the smoothing step. The local Gauss-Seidel procedure includes a commu-
nication step (which updates ghost values around each subdomain’s internal boundary) followed by a traditional
Gauss-Seidel sweep within the subdomain. For the coarsest level in the multigrid scheme, a direct LU solve was
employed. We used smoothed aggregation multigrid solvers available in Trilinos. To solve the linear problem
associated with each Newton iteration, we use GMRESR, a variation on GMRES proposed by van der Vorst and
Vuik [33] allowing the preconditioner to vary at each iteration. GMRESR is required because we use a pre-
conditioned Krylov subspace method to generate approximate solutions in the subsidiary computations (pressure
Poisson and convection-diffusion-like) of the preconditioner, so the preconditioner is not a fixed linear operator.

In our experiments, we compare methods from pressure correction (SIMPLEC) and approximate commutator
(PC-D) with a one-level Schwarz domain decomposition preconditioner [27]. This preconditioner does not vary
from iteration to iteration (as the block preconditioners do), so GMRES can be used as the outer solver. Domain
decomposition methods are based upon computing approximate solutions on subdomains. Robustness can be
improved by increasing the coupling between processors, thus expanding the original subdomains to include
unknowns outside of the processor’s assigned nodes. Again, the original Jacobian system matrix is partitioned
into subdomains using CHACO, whereas AztecOO is used to implement the one-level Schwarz method and
automatically construct the overlapping submatrices. Instead of solving the submatrix systems exactly we use an
incomplete factorization technique on each subdomain (processor). For our experiments, we used an ILU with
a fill-in of 1.0 and a drop tolerance of 0.0. Therefore, the ILU factors have the same number of nonzeros as the
original matrix with no entries dropped. A 2-level or 3-level Schwarz scheme might perform better. However,
there are some issues with directly applying a coarsening scheme to the entire Jacobian-system due to the indefinite
nature of the system [27].

16

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Selected streamlines

0

0.5

1

0

0.5

1
−4

−2

0

2

4

Pressure field

Figure 1. Sample velocity field and pressure field from 2D lid driven cavity.
h = 1/128, Re = 100.

5 Numerical Results

5.1 Benchmark Problems

For our computational study, we have focused our efforts on steady solutions of two benchmark problems, the lid
driven cavity problem and flow over an obstruction, each posed in both two and three spatial dimensions.

5.1.1 Driven Cavity Problem

For the two-dimensional driven cavity, we consider a square region with unit length sides. Velocities are zero on
all edges except the top (the lid), which has a driving horizontal velocity of one. For the three-dimensional driven
cavity, the domain is a cube with unit length sides. Velocities are zero on all faces of the cube, except the top (lid),
which has a driving velocity of one. Each of these problems is then discretized on a uniform mesh of width h. In
two dimensions, we have approximately 3/h2 unknowns, i.e. 1/h2 pressure and 2/h2 velocity unknowns. In three
dimensions, we have approximately 4/h3 unknowns.

The lid driven cavity is a well-known benchmark for fluids problems because it contains many features of
harder flows, such as recirculations. The lid driven cavity poses challenges to both linear and nonlinear solvers
and exhibits unsteady solutions and multiple solutions at high Reynolds numbers. In two dimensions, unsteady
solutions appear around Reynolds number 8000 [14]. In three dimensions, unsteady solutions appear around
Reynolds number 100 [29]. Figure 1 shows the velocity field and pressure field for an example solution to a
two-dimensional lid driven cavity problem with h = 1/128.

5.1.2 Flow over an Obstruction

For the two-dimensional flow over a diamond obstruction, we consider a rectangular region with width of unit
length and a channel length of seven units, where the fluid flows in one side of a channel, then around the
obstruction and out the other end of the channel. Velocities are zero along the top and bottom of the channel and
along the obstruction. The flow is set with a parabolic inflow condition, i.e. ux = 1− y2,uy = 0 and a natural
outflow condition, i.e. ∂ux

∂x = p and ∂uy
∂x = 0.

17

Figure 2. Sample velocity field from 2D flow over a diamond obstruction. 62K
unknowns, Re = 25.

Figure 3. Sample velocity field and unstructured mesh from 2D flow over a
diamond obstruction.

18

Figure 4. Sample velocity field from 3D flow over a cube obstruction, Re = 50.

For the three-dimensional flow over a cube, we consider a rectangular region with a width of one and a half
units, a height of three units, and a channel length of five units. The fluid flows in one side of the channel, then
around the cube, and out the other end of the channel. Velocities are zero along the top and bottom of the channel,
and along the obstruction. The flow is set with a parabolic inflow condition similiar to the two-dimensional case
and with a natural outflow condition.

The flow over an obstruction also poses many difficulties for both linear and nonlinear solvers. This problem
contains an unstructured mesh with inflow and outflow conditions which generates a more realistic, yet difficult
problem than the driven cavity. In two dimensions, unsteady solutions appear around Reynolds number 50 [13].
Figure 2 and Figure 3 shows the velocity field and unstructured mesh for an example solution to a two-dimensional
flow over a diamond obstruction for Re 25. Figure 4 shows the velocity field for an example solution to a three-
dimensional flow over a cube obstruction for Re 50.

5.2 Numerical Results

We terminate the nonlinear iteration when the relative error in the residual is 10−4, i.e.
∥

∥

∥

∥

(

f− (F(u)u+BT p)
g− (B̂u−Cp)

)∥

∥

∥

∥

≤ 10−4
∥

∥

∥

∥

(

f
g

)∥

∥

∥

∥

. (24)

The tolerance ηk for (6), the solve with the Jacobian system, is fixed at 10−5 with zero initial guess. For all of
the problems with the pressure convection-diffusion preconditioner, we employ inexact solves on the subsidiary
pressure Poisson type and convection-diffusion subproblems. For solving the system with coefficient matrix Ap,
we use six iterations of algebraic multigrid preconditioned CG and for the convection-diffusion-like subproblem,
with coefficient matrix F , we fix a tolerance of 10−2, i.e. this iteration is terminated when

‖(y−Fu)‖ ≤ 10−2‖y‖. (25)

We compare this method to a one-level overlapping Schwarz domain decomposition preconditioner that uses
GMRES to solve the Jacobian system at each step [28]. In order to minimize the CPU time and thus reduce
the number of outer iterations, we have found that for the SIMPLEC preconditioner, we could not perform the
Schur complement approximation solve and the solve with F as loosely as we did with the pressure convection-
diffusion preconditioner. For SIMPLEC, we fix a tolerance of 10−5 for the solve with coefficient matrix F in (25)
and the solve with the Schur complement approximation. For the pressure convection-diffusion and SIMPLEC

19

preconditioners, we use a Krylov subspace size of 300 and a maximum number of iterations of 900. For the 2D
domain decomposition preconditioner, we use a Krylov subspace of 600 and a maximum number of iterations
of 1800. For the 3D domain decomposition preconditioner, we use a Krylov subspace of 400 and a maximum
number of iterations of 1200. All of these values are chosen to limit the number of restarts needed for the solver,
while balancing the memory on the compute node. The results were obtained in parallel on Sandia’s Institutional
Computing Cluster (ICC). Each of this cluster’s compute nodes are dual Intel 3.6 GHz Xenon processors with
2GB of RAM.

5.2.1 Lid Driven Cavity Problem

We first compare the performance of the pressure convection-diffusion preconditioner to the domain decomposi-
tion preconditioner on the lid driven cavity problem generated by MPSalsa. In the first column of Table 1, we list
the Reynolds number followed by three mesh sizes in column two. In columns three, four, and five, we list the total
CPU time and the average number of outer linear iterations per Newton step for the pressure convection-diffusion,
domain decomposition, and SIMPLEC preconditioners, respectively. For the pressure convection-diffusion pre-
conditioner, we notice iteration counts that are independent of mesh size for a given Reynolds number. As the
mesh is refined, we do notice an increase in the computational time for a given Reynolds number. This is mostly
due to the increasing cost of the coarsest level solve in the multilevel method, which relies on a sparse direct
solver. One can control this cost by adding additional levels to the multilevel method or by changing the coarse
direct solve to an incomplete LU factorization or iterative solve. The domain decomposition preconditioner
does not display mesh independent convergence behavior as the mesh is refined. However, there is much less
computational effort involved in one iteration of preconditioning with domain decomposition than in one itera-
tion of preconditioning with pressure convection-diffusion. For the fine meshes, the CPU time for the pressure
convection-diffusion preconditioner is four times smaller than domain decomposition. The SIMPLEC method
does not display mesh independent convergence behavior, but it provides solutions in fewer iterations and in less
CPU time for finer meshes than the domain decomposition preconditioner. For large Re, SIMPLEC is sensitive
to the damping parameter on the pressure update. For the results below, the damping factor was 0.01; for larger
values of α the method stagnated. We found SIMPLE to be less effective than SIMPLEC and do not report results
for SIMPLE.

For the 3D driven cavity problems, we find that the pressure convection-diffusion method is faster on larger
meshes than the one-level domain decomposition method. The pressure convection-diffusion method again dis-
plays iteration counts that are largely independent of the mesh size, and display a slight dependence on the
Reynolds number. The SIMPLEC method produces iteration counts that are less dependent on the Reynolds
number than domain decomposition, but it is competitive and in many cases faster than domain decomposition in
terms of CPU time.

The timings for the pressure convection-diffusion (and SIMPLEC) solvers are functions of the costs of the
component operations that define them. In particular, as Reynolds number increases, the convection-diffusion-like
solve is becoming more expensive, i.e., more steps and therefore more CPU time is needed to reach the stopping
tolerance (25). In addition, the coarse grid solve in the multigrid iterations, which is a direct LU factorization,
increases as the mesh is refined. Solving nonsymmetic problems with algebraic multigrid is an active research
topic; if a more effective scalable solver did exist for this subproblem, then the CPU timings would be considerably
lower and more scalable [2].

5.2.2 Flow over a Diamond Obstruction

The pressure convection-diffusion preconditioner, SIMPLEC, and the domain decomposition preconditioner are
compared for the diamond obstruction problem in Table 3. Many of the trends are similiar to the results from

20

Re Number Mesh Size Pressure C-D SIMPLEC DD One-level Procs
iters time iters time iters time

Re = 10 64×64 19.4 17.2 41.8 32.9 79.4 19.4 1
128×128 21.2 28.4 66.0 78.9 220.6 79.8 4
256×256 23.0 69.3 104.3 229.2 467.2 619.4 16
512×512 23.2 257.2 164.0 619.4 1356.8 2901.9 64

Re = 100 64×64 35.0 28.7 52.0 50.8 86.5 26.4 1
128×128 35.9 59.5 71.8 87.9 300.3 130.2 4
256×256 41.3 102.1 109.8 410.5 528.8 593.1 16
512×512 41.0 345.7 169.4 941.2 NC NC 64

Re = 500 64×64 73.0 200.5 73.9 206.7 89.7 44.4 1
128×128 79.1 385.6 107.5 401.2 334.9 215.9 4
256×256 84.3 607.4 177.6 1600.6 896.1 1592.5 16
512×512 90.2 1811.1 204.3 4109.2 NC NC 64

Re = 1000 64×64 NC NC NC NC NC NC 1
128×128 126.4 570.9 142.0 1220.4 352.5 275.8 4
256×256 126.6 1207.6 251.6 3494.2 839.5 2009.6 16
512×512 143.2 2563.2 401.2 7598.2 NC NC 64

Table 1. Comparison of the iteration counts and CPU time for the pressure
convection-diffusion, SIMPLEC, and domain decomposition preconditioners for
the 2D lid driven cavity problem. NC stands for no covergence. For the 512×512
DD solver results, we could not converge to a solution for a Krylov subspace size
of 900 and 4500 max iterations.

the driven cavity problem, mainly iteration counts that are largely independent of mesh size for a given Reynolds
number and an increase in the computational time as the mesh size is refined. The domain decomposition precon-
ditioner does not display mesh independent convergence behavior as the mesh is refined. For Re 10 and Re 25, the
pressure convection-diffusion preconditioner was faster in all cases. For Re 40, it was faster for all meshes except
for the small problems with 62,000 unknowns run on one processor. Note that the GMRES solver preconditioned
with domain decomposition stagnated before a solution was found for the problems with 4 million unknowns. The
pressure convection-diffusion preconditioner converged without difficulty on this problem. On modest sized prob-
lems (those with more than 256K unknowns) where both methods converged, the pressure convection-diffusion
preconditioner ranged from four to fifteen times faster than domain decomposition.

In Table 4, we compare the impact of inexact solves of the subsidiary systems required for the pressure
convection-diffusion preconditioner. In particular, we look at the “exact” pressure convection-diffusion precon-
ditioner, where we solved the subsidiary systems to a tolerance of 10−5. The exact pc-d preconditioner shows
iteration counts that are mesh independent and reduce as the mesh is refined, but with increasing CPU cost. How-
ever, the exact method is still considerably faster than domain decomposition for this problem. For a user of these
methods, we recommend the inexact variant because the iteration counts are nearly independent and require less
CPU time.

21

Re Number Mesh Size Pressure C-D SIMPLEC One-level DD Procs
iters time iters time iters time

Re = 10 32×32×32 28.0 803.2 30.5 1205.6 67.0 634.6 1
64×64×64 28.4 865.2 50.8 2034.1 159.8 1507.5 8

128×128×128 31.1 1249.0 280.8 12490.5 356.2 4529.3 64
Re = 50 32×32×32 40.2 946.9 33.3 1302.6 62.2 615.5 1

64×64×64 47.8 1061.6 52.5 2457.6 162.6 1533.2 8
128×128×128 50.1 2101.2 291.2 14987.2 385.5 6460.9 64

Re = 100 32×32×32 56.0 1232.7 40.8 1884.4 61.7 730.7 1
64×64×64 62.1 1697.8 61.6 3184.4 168.5 2131.6 8

128×128×128 64.2 3019.2 299.1 17184.2 404.6 6953.9 64

Table 2. Comparison of the iteration counts and CPU time for the pressure
convection-diffusion, SIMPLEC, and domain decomposition preconditioners for
the 3D lid driven cavity problem.

Re Number Unknowns Pressure C-D SIMPLEC DD One-level Procs
iters time iters time iters time

Re = 10 62K 21.7 138.8 52.8 502.2 110.8 186.6 1
256K 22.6 192.7 83.6 1203.9 282.6 1054.9 4
1M 25.6 252.3 130.8 1845.3 890.2 6187.4 16
4M 29.7 397.5 212.6 5834.6 NC NC 64

Re = 25 62K 34.9 248.0 66.5 760.5 101.7 198.8 1
256K 40.4 384.6 104.7 1920.3 273.8 1118.6 4
1M 43.6 445.9 160.8 2985.2 864.5 6226.0 16
4M 49.1 736.6 402.1 8241.3 NC NC 64

Re = 40 62K 64.6 565.8 74.8 1278.7 70.4 267.2 1
256K 68.9 975.2 113.6 2718.9 203.9 1269.3 4
1M 72.7 1039.2 260.9 7535.0 770.0 6933.5 16
4M 78.3 1528.6 410.1 11992.2 NC NC 64

Table 3. Comparison of the iteration counts and CPU time for the pressure
convection-diffusion, SIMPLEC and domain decomposition preconditioners for
the 2D flow over a diamond obstruction. NC stands for no convergence.

22

Re Number Unknowns Inexact Pressure C-D Exact PC-D DD One-level Procs
iters time iters time iters time

Re = 10 62K 21.7 138.8 18.7 194.8 110.8 186.6 1
256K 22.6 192.7 16.8 294.0 282.6 1054.9 4
1M 25.6 252.3 16.1 406.4 890.2 6187.4 16
4M 29.7 397.5 14.8 655.8 NC NC 64

Re = 25 62K 34.9 248.0 32.8 695.2 101.7 198.8 1
256K 40.4 384.6 31.6 621.4 273.8 1118.6 4
1M 43.6 445.9 28.6 778.8 864.5 6226.0 16
4M 49.1 736.6 25.3 1312.8 NC NC 64

Re = 40 62K 64.6 565.8 44.4 781.3 70.4 267.2 1
256K 68.9 975.2 39.2 1116.7 203.9 1269.3 4
1M 72.7 1039.2 38.7 1352.7 770.0 6933.5 16
4M 78.3 1528.6 35.2 2280.3 NC NC 64

Table 4. Comparison of the iteration counts and CPU time for the inexact pres-
sure convection-diffusion, exact pressure convection-diffusion and domain de-
composition preconditioners for the 2D flow over a diamond obstruction. NC
stands for no convergence.

Re Number Unknowns Pressure C-D SIMPLEC DD One-level Procs
iters time iters time iters time

Re = 10 270K 20.7 997.7 45.2 1897.1 67.2 859.8 1
2.1M 21.7 1507.5 79.3 4593.2 151.2 2004.0 8
16.8M 24.7 1997.7 118.7 19907.1 667.2 20908.0 64

Re = 50 270K 35.9 1209.7 49.2 2109.2 69.4 889.2 1
2.1M 38.7 1797.7 84.9 3201.3 132.4 2676.1 8
16.8M 44.7 2397.7 140.2 28156.1 637.2 18646.0 64

Table 5. Comparison of the iteration counts and CPU time for the pressure
convection-diffusion and domain decomposition preconditioners for the flow
over a 3D cube. NC stands for no convergence.

23

6 Conclusions

We have described a taxonomy for preconditioning techniques for the incompressible Navier-Stokes equations.
We have included traditional methods of pressure projection and pressure correction type along with newer ap-
proximate commutator methods derived from an approximation of the Schur complement. This taxonomy is based
upon a block factorization of the Jacobian matrix in the Newton nonlinear iteration where methods are determined
by making choices on the grouping of the block upper, lower, and diagonal factors along with approximations to
the action of the inverse of certain operators and the Schur complement. All the methods require solutions of dis-
crete scalar systems of convection diffusion and pressure Poisson-type that are significantly easier to solve than
the entire coupled system.

In experiments with these methods using benchmark problems from MPSalsa we have demonstrated that the
pressure convection-diffusion method gives superior iteration counts and CPU times for 2D and 3D problems
with the one-level additive Schwarz domain decomposition method. For the approximate commutator methods
we have demonstrated asymptotic convergence behavior that is essentially mesh independent in 2D and 3D for
problems generated by an application code, MPSalsa, over a range of Reynolds numbers and problems discretized
on structured and unstructured meshes with inflow and outflow conditions. For the steady-state problems explored,
the iteration counts show only a slight degradation for increasing Reynolds number. In the future, we intend to
further expand this technique to time dependent problems and problems posed on more complex domains.

24

References

[1] M. ADAMS, M. BREZINA, J. HU, AND R. TUMINARO, Parallel multigrid smoothing: Polynomial versus
Gauss-Seidel, Journal of Computational Physics, 188 (2003), pp. 593–610.

[2] M. BENZI, Preconditioning techniques for large linear systems: A survey, Journal of Computational
Physics, 182 (2002), pp. 418–477.

[3] M. BENZI AND G. H. GOLUB, A preconditioner for generalized saddle point problems, SIAM Journal on
Matrix Analysis and its Applications, 26 (2004), pp. 20–41.

[4] M. BENZI, G. H. GOLUB, AND J. LIESEN, Numerical solution of saddle point problems, Acta Numerica,
14 (2005), pp. 1–137.

[5] A. N. BROOKS AND T. HUGHES, Streamline upwind/Petrov-Galerkin formulations for convection domi-
nated flows with particular emphasis on the incompressible Navier-Stokes equations, Computational Meth-
ods in Applied Mechanics and Engineering, 32 (1982), pp. 199–259.

[6] E. CHOW AND Y. SAAD, Approximate inverse techniques for block-partitioned matrices, SIAM Journal on
Scientific Computing, 18 (1997), pp. 1657–1675.

[7] S. C. EISENSTAT AND H. F. WALKER, Choosing the forcing terms in an inexact Newton method, SIAM
Journal on Scientific Computing, 17 (1996), pp. 16–32.

[8] H. ELMAN, D. SILVESTER, AND A. WATHEN, Finite Elements and Fast Iterative Solvers, Oxford Univer-
sity Press, Oxford, UK, 2005.

[9] H. C. ELMAN, Preconditioning for the steady-state Navier–Stokes equations with low viscosity, SIAM
Journal on Scientific Computing, 20 (1999), pp. 1299–1316.

[10] H. C. ELMAN, V. E. HOWLE, J. SHADID, R. SHUTTLEWORTH, AND R. TUMINARO, Block precondition-
ers based on approximate commutators, SIAM Journal on Scientific Computing, 27 (2005), pp. 1651–1668.

[11] H. C. ELMAN, V. E. HOWLE, J. SHADID, D. SILVESTER, AND R. TUMINARO, Least squares precondi-
tioners for stabilized discretizations of the Navier-Stokes equations, tech. report, University of Maryland,
College Park, 2006.

[12] H. C. ELMAN, D. J. SILVESTER, AND A. J. WATHEN, Performance and analysis of saddle point pre-
conditioners for the discrete steady-state Navier–Stokes equations, Numerische Mathematik, 90 (2002),
pp. 665–688.

[13] B. FORNBERG, Computing incompressible flows past blunt bodies–a historical overview, Numerical Meth-
ods for Fluid Dynamics, IV (1993).

[14] A. FORTIN, M. JARDARK, J. GERVAIS, AND R. PIERRE, Localization of Hopf bifurcations in fluid flow
problems, International Journal for Numerical Methods in Fluids, 24 (1997), pp. 1185–1210.

[15] B. HENDRICKSON AND R. LELAND, A users guide to Chaco, version 1.0., Tech. Report SAND93-2339,
Sandia National Laboratories, 1993.

[16] M. A. HEROUX, Trilinos/Petra: linear algebra services package, Tech. Report SAND2001-1494W, Sandia
National Laboratories, 2001.

[17] D. KAY, D. LOGHIN, AND A. J. WATHEN, A preconditioner for the steady-state Navier–Stokes equations,
SIAM Journal on Scientific Computing, 24 (2002), pp. 237–256.

25

[18] D. A. KNOLL AND D. E. KEYES, Jacobian-free Newton–Krylov methods: a survey of approaches and
applications, Journal of Computational Physics, 193 (2004), pp. 357–397.

[19] D. LOGHIN, A. WATHEN, AND H. ELMAN, Preconditioning techniques for Newton’s method for the in-
compressible Navier-Stokes equations, BIT, 43 (2003), pp. 961–974.

[20] M. F. MURPHY, G. H. GOLUB, AND A. J. WATHEN, A note on preconditioning for indefinite linear systems,
SIAM Journal on Scientific Computing, 21 (2000), pp. 1969–1972.

[21] S. V. PATANKAR, Numerical heat transfer and fluid flow, Hemisphere Publishing Corporation, New York,
1980.

[22] S. V. PATANKAR AND D. A. SPALDING, A calculation procedure for heat, mass and momentum transfer in
three dimensional parabolic flows, International Journal on Heat and Mass Transfer, 15 (1972), pp. 1787–
1806.

[23] M. PERNICE AND M. D. TOCCI, A multigrid- preconditioned Newton–Krylov method for the incompressible
Navier–Stokes equations, SIAM Journal on Scientific Computing, 123 (2001), pp. 398–418.

[24] J. B. PEROT, An analysis of the fractional step method, Journal of Computational Physics, 108 (1993),
pp. 51–58.

[25] A. QUARTERONI, F. SALERI, AND A. VENEZIANI, Factorization methods for the numerical approxima-
tion of Navier–Stokes equations, Computational Methods in Applied Mechanical Engineering, 188 (2000),
pp. 505–526.

[26] J. SHADID, A. SALINGER, R. SCHMIDT, T. SMITH, S. HUTCHINSON, G. HENNIGAN, K. DEVINE, AND
H. MOFFAT., MPSalsa version 1.5: A finite element computer program for reacting flow problems, tech.
report, Sandia National Laboratories, 1998.

[27] J. SHADID, R. TUMINARO, K. DEVINE, G. HENNIGAN, AND P. LIN, Performance of fully-coupled domain
decomposition preconditioners for finite element transport/reaction simulations, Journal of Computational
Physics, 205 (2005), pp. 24–47.

[28] , Performance of fully-coupled domain decomposition preconditioners for finite element trans-
port/reaction simulations, Journal of Computational Physics, 205 (2005), pp. 24–47.

[29] P. N. SHANKAR AND M. D. DESHPANDE, Fluid mechanics in the driven cavity, Annual Review of Fluid
Mechanics, 32 (2000), pp. 93–136.

[30] D. SILVESTER, H. ELMAN, D. KAY, AND A. WATHEN, Efficient preconditioning of the linearized Navier–
Stokes equations for incompressible flow, Journal on Computational and Applied Mathematics, 128 (2001),
pp. 261–279.

[31] T. E. TEZDUYAR, Stabilized finite element formulations for incompressible flow computations, Advances in
Applied Mechanics, 28 (1991), pp. 1–44.

[32] R. TUMINARO AND C. TONG, Parallel smoothed aggregation multigrid: Aggregation strategies on mas-
sively parallel machines, in SuperComputing 2000 Proceedings, J. Donnelley, ed., 2000.

[33] H. A. VAN DER VORST AND C. VUIK, GMRESR: a family of nested GMRES methods, Numerical Linear
Algebra with Applications, 1 (1994), pp. 369–386.

[34] P. VANEK, M. BREZINA, AND J. MANDEL, Convergence of algebraic multigrid based on smoothed aggre-
gation, Numerische Mathematik, 88 (2001), pp. 559–579.

26

	A Taxonomy and Comparison of Parallel Block Multi-level Preconditioners for the Incompressible Navier–Stokes Equations
	Abstract
	1 Introduction
	2 Background
	3 Taxonomy of Approximate Block Factorization Preconditioners
	3.1 Pressure Correction
	3.2 Approximate Commutator Methods

	4 Implementation and Testing Environment
	4.1 Problem and Preconditioner Structure
	4.2 Software
	4.3 Operations Required

	5 Numerical Results
	5.1 Benchmark Problems
	5.2 Numerical Results

	6 Conclusions
	References

