67 research outputs found

    What is missing in autonomous discovery: Open challenges for the community

    Full text link
    Self-driving labs (SDLs) leverage combinations of artificial intelligence, automation, and advanced computing to accelerate scientific discovery. The promise of this field has given rise to a rich community of passionate scientists, engineers, and social scientists, as evidenced by the development of the Acceleration Consortium and recent Accelerate Conference. Despite its strengths, this rapidly developing field presents numerous opportunities for growth, challenges to overcome, and potential risks of which to remain aware. This community perspective builds on a discourse instantiated during the first Accelerate Conference, and looks to the future of self-driving labs with a tempered optimism. Incorporating input from academia, government, and industry, we briefly describe the current status of self-driving labs, then turn our attention to barriers, opportunities, and a vision for what is possible. Our field is delivering solutions in technology and infrastructure, artificial intelligence and knowledge generation, and education and workforce development. In the spirit of community, we intend for this work to foster discussion and drive best practices as our field grows

    Meningococcal disease in North America: Updates from the Global Meningococcal Initiative

    Get PDF
    This review summarizes the recent Global Meningococcal Initiative (GMI) regional meeting, which explored meningococcal disease in North America. Invasive meningococcal disease (IMD) cases are documented through both passive and active surveillance networks. IMD appears to be decreasing in many areas, such as the Dominican Republic (2016: 18 cases; 2021: 2 cases) and Panama (2008: 1 case/100,000; 2021: <0.1 cases/100,000); however, there is notable regional and temporal variation. Outbreaks persist in at-risk subpopulations, such as people experiencing homelessness in the US and migrants in Mexico. The recent emergence of β-lactamase-positive and ciprofloxacin-resistant meningococci in the US is a major concern. While vaccination practices vary across North America, vaccine uptake remains relatively high. Monovalent and multivalent conjugate vaccines (which many countries in North America primarily use) can provide herd protection. However, there is no evidence that group B vaccines reduce meningococcal carriage. The coronavirus pandemic illustrates that following public health crises, enhanced surveillance of disease epidemiology and catch-up vaccine schedules is key. Whole genome sequencing is a key epidemiological tool for identifying IMD strain emergence and the evaluation of vaccine strain coverage. The Global Roadmap on Defeating Meningitis by 2030 remains a focus of the GMI.Medical writing support for the development of this manuscript, under the direction of the authors, was provided Matthew Gunther of Ashfield MedComms, an Inizio company. Medical writing support was funded by Sanofi Pasteur. All authors discussed and agreed to the objectives of this manuscript and con- tributed throughout its production. All authors read and approved the final manuscript.S

    The impact of Curtin University's Activity, Food and Attitudes Program on physical activity, sedentary time and fruit, vegetable and junk food consumption among overweight and obese adolescents: A waitlist controlled trial

    Get PDF
    Background: To determine the effects of participation in Curtin University's Activity, Food and Attitudes Program (CAFAP), a community-based, family-centered behavioural intervention, on the physical activity, sedentary time, and healthy eating behaviours of overweight and obese adolescents. Methods: In this waitlist controlled clinical trial in Western Australia, adolescents (n = 69, 71% female, mean age 14.1 (SD 1.6) years) and parents completed an 8-week intervention followed by 12 months of telephone and text message support. Assessments were completed at baseline, before beginning the intervention, immediately following the intervention, and at 3-, 6-, and 12- months follow-up. The primary outcomes were physical activity and sedentary time assessed by accelerometers and servings of fruit, vegetables and junk food assessed by 3-day food records. Results: During the intensive 8-week intervention sedentary time decreased by −5.1 min/day/month (95% CI: −11.0, 0.8) which was significantly greater than the rate of change during the waitlist period (p = .014). Moderate physical activity increased by 1.8 min/day/month (95% CI: −0.04, 3.6) during the intervention period, which was significantly greater than the rate of change during the waitlist period (p = .041). Fruit consumption increased during the intervention period (monthly incidence rate ratio (IRR) 1.3, 95% CI: 1.10, 1.56) and junk food consumption decreased (monthly IRR 0.8, 95% CI: 0.74, 0.94) and these changes were different to those seen during the waitlist period (p = .004 and p = .020 respectively). Conclusions: Participating in CAFAP appeared to have a positive influence on the physical activity, sedentary and healthy eating behaviours of overweight and obese adolescents and many of these changes were maintained for one year following the intensive intervention. Trial Registration: Australia and New Zealand Clinical Trials Registry ACTRN12611001187932

    Objectively measured patterns of sedentary time and physical activity in young adults of the Raine study cohort

    Get PDF
    Background: To provide a detailed description of young adults' sedentary time and physical activity. Methods: 384 young women and 389 young men aged 22.1±0.6 years, all participants in the 22 year old follow-up of the Raine Study pregnancy cohort, wore Actigraph GT3X+ monitors on the hip for 24 h/day over a one-week period for at least one 'valid' day (=10 h of waking wear time). Each minute epoch was classified as sedentary, light, moderate or vigorous intensity using 100 count and Freedson cut-points. Mixed models assessed hourly and daily variation; t-tests assessed gender differences. Results: The average (mean±SD) waking wear time was 15.0±1.6 h/day, of which 61.4±10.1 % was spent sedentary, 34.6±9.1 % in light-, 3.7±5.3 % in moderate- and, 0.3±0.6 % in vigorous-intensity activity. Average time spent in moderate to vigorous activity (MVPA) was 36.2±27.5 min/day. Relative to men, women had higher sedentary time, but also higher vigorous activity time. The 'usual' bout duration of sedentary time was 11.8±4.5 min in women and 11.7±5.2 min in men. By contrast, other activities were accumulated in shorter bout durations. There was large variation by hour of the day and by day of the week in both sedentary time and MVPA. Evenings and Sundays through Wednesdays tended to be particularly sedentary and/or inactive. Conclusion: For these young adults, much of the waking day was spent sedentary and many participants were physically inactive (low levels of MVPA). We provide novel evidence on the time for which activities were performed and on the time periods when young adults were more sedentary and/or less active. With high sedentary time and low MVPA, young adults may be at risk for the life-course sequelae of these behaviours

    Development and Evaluation of a Psychosocial Intervention for Children and Teenagers Experiencing Diabetes (DEPICTED): a protocol for a cluster randomised controlled trial of the effectiveness of a communication skills training programme for healthcare professionals working with young people with type 1 diabetes

    Get PDF
    Background Diabetes is the third most common chronic condition in childhood and poor glycaemic control leads to serious short-term and life-limiting long-term complications. In addition to optimal medical management, it is widely recognised that psychosocial and educational factors play a key role in improving outcomes for young people with diabetes. Recent systematic reviews of psycho-educational interventions recognise the need for new methods to be developed in consultation with key stakeholders including patients, their families and the multidisciplinary diabetes healthcare team. Methods/design Following a development phase involving key stakeholders, a psychosocial intervention for use by paediatric diabetes staff and not requiring input from trained psychologists has been developed, incorporating a communication skills training programme for health professionals and a shared agenda-setting tool. The effectiveness of the intervention will be evaluated in a cluster-randomised controlled trial (RCT). The primary outcome, to be measured in children aged 4-15 years diagnosed with type 1 diabetes for at least one year, is the effect on glycaemic control (HbA1c) during the year after training of the healthcare team is completed. Secondary outcomes include quality of life for patients and carers and cost-effectiveness. Patient and carer preferences for service delivery will also be assessed. Twenty-six paediatric diabetes teams are participating in the trial, recruiting a total of 700 patients for evaluation of outcome measures. Half the participating teams will be randomised to receive the intervention at the beginning of the trial and remaining centres offered the training package at the end of the one year trial period. Discussion The primary aim of the trial is to determine whether a communication skills training intervention for specialist paediatric diabetes teams will improve clinical and psychological outcomes for young people with type 1 diabetes. Previous research indicates the effectiveness of specialist psychological interventions in achieving sustained improvements in glycaemic control. This trial will evaluate an intervention which does not require the involvement of trained psychologists, maximising the potential feasibility of delivery in a wider NHS context. Trial registration Current Controlled Trials ISRCTN61568050

    A cluster randomised controlled trial of the clinical and cost-effectiveness of a 'whole systems' model of self-management support for the management of long- term conditions in primary care: trial protocol

    Get PDF
    BackgroundPatients with long-term conditions are increasingly the focus of quality improvement activities in health services to reduce the impact of these conditions on quality of life and to reduce the burden on care utilisation. There is significant interest in the potential for self-management support to improve health and reduce utilisation in these patient populations, but little consensus concerning the optimal model that would best provide such support. We describe the implementation and evaluation of self-management support through an evidence-based 'whole systems' model involving patient support, training for primary care teams, and service re-organisation, all integrated into routine delivery within primary care.MethodsThe evaluation involves a large-scale, multi-site study of the implementation, effectiveness, and cost-effectiveness of this model of self-management support using a cluster randomised controlled trial in patients with three long-term conditions of diabetes, chronic obstructive pulmonary disease (COPD), and irritable bowel syndrome (IBS). The outcome measures include healthcare utilisation and quality of life. We describe the methods of the cluster randomised trial.DiscussionIf the 'whole systems' model proves effective and cost-effective, it will provide decision-makers with a model for the delivery of self-management support for populations with long-term conditions that can be implemented widely to maximise 'reach' across the wider patient population.Trial registration numberISRCTN: ISRCTN9094004

    Maternal Undernutrition Significantly Impacts Ovarian Follicle Number and Increases Ovarian Oxidative Stress in Adult Rat Offspring

    Get PDF
    BACKGROUND: We have shown recently that maternal undernutrition (UN) advanced female pubertal onset in a manner that is dependent upon the timing of UN. The long-term consequence of this accelerated puberty on ovarian function is unknown. Recent findings suggest that oxidative stress may be one mechanism whereby early life events impact on later physiological functioning. Therefore, using an established rodent model of maternal UN at critical windows of development, we examined maternal UN-induced changes in offspring ovarian function and determined whether these changes were underpinned by ovarian oxidative stress. METHODOLOGY/PRINCIPAL FINDINGS: Our study is the first to show that maternal UN significantly reduced primordial and secondary follicle number in offspring in a manner that was dependent upon the timing of maternal UN. Specifically, a reduction in these early stage follicles was observed in offspring born to mothers undernourished throughout both pregnancy and lactation. Additionally, antral follicle number was reduced in offspring born to all mothers that were UN regardless of whether the period of UN was restricted to pregnancy or lactation or both. These reductions were associated with decreased mRNA levels of genes critical for follicle maturation and ovulation. Increased ovarian protein carbonyls were observed in offspring born to mothers UN during pregnancy and/or lactation and this was associated with peroxiredoxin 3 hyperoxidation and reduced mRNA levels; suggesting compromised antioxidant defence. This was not observed in offspring of mothers UN during lactation alone. CONCLUSIONS: We propose that maternal UN, particularly at a time-point that includes pregnancy, results in reduced offspring ovarian follicle numbers and mRNA levels of regulatory genes and may be mediated by increased ovarian oxidative stress coupled with a decreased ability to repair the resultant oxidative damage. Together these data are suggestive of maternal UN potentially contributing to premature ovarian ageing in offspring

    A common haplotype lowers PU.1 expression in myeloid cells and delays onset of Alzheimer's disease

    Get PDF
    A genome-wide survival analysis of 14,406 Alzheimer's disease (AD) cases and 25,849 controls identified eight previously reported AD risk loci and 14 novel loci associated with age at onset. Linkage disequilibrium score regression of 220 cell types implicated the regulation of myeloid gene expression in AD risk. The minor allele of rs1057233 (G), within the previously reported CELF1 AD risk locus, showed association with delayed AD onset and lower expression of SPI1 in monocytes and macrophages. SPI1 encodes PU.1, a transcription factor critical for myeloid cell development and function. AD heritability was enriched within the PU.1 cistrome, implicating a myeloid PU.1 target gene network in AD. Finally, experimentally altered PU.1 levels affected the expression of mouse orthologs of many AD risk genes and the phagocytic activity of mouse microglial cells. Our results suggest that lower SPI1 expression reduces AD risk by regulating myeloid gene expression and cell function

    A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants.

    Get PDF
    This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/ng.3448Advanced age-related macular degeneration (AMD) is the leading cause of blindness in the elderly, with limited therapeutic options. Here we report on a study of >12 million variants, including 163,714 directly genotyped, mostly rare, protein-altering variants. Analyzing 16,144 patients and 17,832 controls, we identify 52 independently associated common and rare variants (P < 5 × 10(-8)) distributed across 34 loci. Although wet and dry AMD subtypes exhibit predominantly shared genetics, we identify the first genetic association signal specific to wet AMD, near MMP9 (difference P value = 4.1 × 10(-10)). Very rare coding variants (frequency <0.1%) in CFH, CFI and TIMP3 suggest causal roles for these genes, as does a splice variant in SLC16A8. Our results support the hypothesis that rare coding variants can pinpoint causal genes within known genetic loci and illustrate that applying the approach systematically to detect new loci requires extremely large sample sizes.We thank all participants of all the studies included for enabling this research by their participation in these studies. Computer resources for this project have been provided by the high-performance computing centers of the University of Michigan and the University of Regensburg. Group-specific acknowledgments can be found in the Supplementary Note. The Center for Inherited Diseases Research (CIDR) Program contract number is HHSN268201200008I. This and the main consortium work were predominantly funded by 1X01HG006934-01 to G.R.A. and R01 EY022310 to J.L.H

    Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A

    Get PDF
    The major histocompatibility complex (MHC) on chromosome 6 is associated with susceptibility to more common diseases than any other region of the human genome, including almost all disorders classified as autoimmune. In type 1 diabetes the major genetic susceptibility determinants have been mapped to the MHC class II genes HLA-DQB1 and HLA-DRB1 (refs 1-3), but these genes cannot completely explain the association between type 1 diabetes and the MHC region. Owing to the region's extreme gene density, the multiplicity of disease-associated alleles, strong associations between alleles, limited genotyping capability, and inadequate statistical approaches and sample sizes, which, and how many, loci within the MHC determine susceptibility remains unclear. Here, in several large type 1 diabetes data sets, we analyse a combined total of 1,729 polymorphisms, and apply statistical methods - recursive partitioning and regression - to pinpoint disease susceptibility to the MHC class I genes HLA-B and HLA-A (risk ratios >1.5; Pcombined = 2.01 × 10-19 and 2.35 × 10-13, respectively) in addition to the established associations of the MHC class II genes. Other loci with smaller and/or rarer effects might also be involved, but to find these, future searches must take into account both the HLA class II and class I genes and use even larger samples. Taken together with previous studies, we conclude that MHC-class-I-mediated events, principally involving HLA-B*39, contribute to the aetiology of type 1 diabetes. ©2007 Nature Publishing Group
    corecore