53 research outputs found

    Kindia (Pavetteae, Rubiaceae), a new cliff-dwelling genus with chemically profiled colleter exudate from Mt Gangan, Republic of Guinea

    Get PDF
    A new genus Kindia (Pavetteae, Rubiaceae) is described with a single species, Kindia gangan, based on collections made in 2016 during botanical exploration of Mt Gangan, Kindia, Republic of Guinea in West Africa. The Mt Gangan area is known for its many endemic species including the only native non-neotropical Bromeliaceae Pitcairnia feliciana. Kindia is the fourth endemic vascular plant genus to be described from Guinea. Based on chloroplast sequence data, the genus is part of Clade II of tribe Pavetteae. In this clade, it is sister to Leptactina sensu lato (including Coleactina and Dictyandra). K. gangan is distinguished from Leptactina s.l. by the combination of the following characters: its epilithic habit; several-flowered axillary inflorescences; distinct calyx tube as long as the lobes; a infundibular-campanulate corolla tube with narrow proximal section widening abruptly to the broad distal section; presence of a dense hair band near base of the corolla tube; anthers and style deeply included, reaching about mid-height of the corolla tube; anthers lacking connective appendages and with sub-basal insertion; pollen type 1; pollen presenter (style head) winged and glabrous (smooth and usually hairy in Leptactina); orange colleters producing a vivid red exudate, which encircle the hypanthium, and occur inside the calyx and stipules. Kindia is a subshrub that appears restricted to bare, vertical rock faces of sandstone. Fruit dispersal and pollination by bats is postulated. Here, it is assessed as Endangered EN D1 using the 2012 IUCN standard. High resolution LC-MS/MS analysis revealed over 40 triterpenoid compounds in the colleter exudate, including those assigned to the cycloartane class. Triterpenoids are of interest for their diverse chemical structures, varied biological activities, and potential therapeutic value

    Kupeantha (Coffeeae, Rubiaceae), a new genus from Cameroon and Equatorial Guinea

    Get PDF
    Two new coffee relatives (tribe Coffeeae, Rubiaceae), discovered during botanical expeditions to Cameroon, are examined for generic placement, and the placement of three previously known species (Argocoffeopsis fosimondi, A. spathulata and Calycosiphonia pentamera) is reinvestigated using plastid sequence (accD-psa1, rpl16, trnL-F) and morphological data. Seed biochemistry of the new species and pollen micromorphology (only one of the two species) are also studied. Based on the plastid sequence data, the new taxa are nested in a wellsupported monophyletic group that includes Argocoffeopsis and Calycosiphonia. Within this clade, three well-supported subclades are recovered that are morphologically easy to diagnose: (1) Calycosiphonia (excluding C. pentamera), (2) Argocoffeopsis (excluding A. fosimondi and A. spathulata), and (3) a clade including the above excluded species, in addition to the new species. Based on the results, Kupeantha, a new genus of five species, is described, including two new Critically Endangered taxa from the Highlands of Cameroon: Kupeantha ebo and K. kupensis. Phytochemical analysis of Kupeantha seeds reveals compounds assigned as hydroxycinnamic acid derivatives, amino acids and ent-kaurane diterpenoids; caffeine was not detected. Kupeantha is the first new genus described in tribe Coffeeae in 40 years

    New Insights Into the Anticonvulsant Effects of Essential Oil From Melissa officinalis L. (Lemon Balm)

    Get PDF
    Melissa officinalis L. is used in traditional European and Iranian folk medicines to treat a plethora of neurological diseases including epilepsy. We utilized the in vitro and in vivo models of epilepsy to probe the anticonvulsant potentials of essential oil from M. officinalis (MO) to gain insight into the scientific basis for its applications in traditional medicine for the management of convulsive disorders. MO was evaluated for effects on maximal electroshock (MES) and pentylenetetrazole (PTZ) -induced seizures in mice, on 4–aminopyridine (4-AP)-brain slice model of epilepsy and sustained repetitive firing of current clamped neurons; and its ameliorative effects were examined on seizure severity, anxiety, depression, cognitive dysfunction, oxidative stress and neuronal cell loss in PTZ-kindled rats. MO reversibly blocked spontaneous ictal-like discharges in the 4-AP-brain slice model of epilepsy and secondary spikes from sustained repetitive firing, suggesting anticonvulsant effects and voltage-gated sodium channel blockade. MO protected mice from PTZ– and MES–induced seizures and mortality, and ameliorated seizure severity, fear-avoidance, depressive-like behavior, cognitive deficits, oxidative stress and neuronal cell loss in PTZ–kindled rats. The findings warrant further study for the potential use of MO and/or its constituent(s) as adjunctive therapy for epileptic patients

    Unlocking plant resources to support food security and promote sustainable agriculture

    Get PDF
    As the world's population is increasing, humanity is facing both shortages (hunger) and excesses (obesity) of calorie and nutrient intakes. Biodiversity is fundamental to addressing this double challenge, which involves a far better understanding of the global state of food resources. Current estimates suggest that there are at least 7,039 edible plant species, in a broad taxonomic sense, which includes 7,014 vascular plants. This is in striking contrast to the small handful of food crops that provide the majority of humanity's calorie and nutrient intake. Most of these 7,039 edible species have additional uses, the most common being medicines (70%), materials (59%), and environmental uses (40%). Species of major food crops display centers of diversity, as previously proposed, while the rest of edible plants follow latitudinal distribution patterns similarly to the total plant diversity, with higher species richness at lower latitudes. The International Union for Conservation of Nature Red List includes global conservation assessments for at least 30% of edible plants, with ca. 86% of them conserved ex situ. However, at least 11% of those species recorded are threatened. We highlight multipurpose NUS of plants from different regions of the world, which could be key for a more resilient, sustainable, biodiverse, and community participation-driven new “green revolution.” Furthermore, we explore how fungi could diversify and increase the nutritional value of our diets. NUS, along with the wealth of traditional knowledge about their uses and practices, offer a largely untapped resource to support food security and sustainable agriculture. However, for these natural resources to be unlocked, enhanced collaboration among stakeholders is vital

    The Role of Phytochemicals in the Treatment and Prevention of Dementia.

    No full text
    • 

    corecore