91 research outputs found

    Evidence for electron Landau damping in space plasma turbulence

    Get PDF
    How turbulent energy is dissipated in weakly collisional space and astrophysical plasmas is a major open question. Here, we present the application of a field-particle correlation technique to directly measure the transfer of energy between the turbulent electromagnetic field and electrons in the Earth's magnetosheath, the region of solar wind downstream of the Earth's bow shock. The measurement of the secular energy transfer from the parallel electric field as a function of electron velocity shows a signature consistent with Landau damping. This signature is coherent over time, close to the predicted resonant velocity, similar to that seen in kinetic Alfven turbulence simulations, and disappears under phase randomisation. This suggests that electron Landau damping could play a significant role in turbulent plasma heating, and that the technique is a valuable tool for determining the particle energisation processes operating in space and astrophysical plasmas.STFC Ernest Rutherford Fellowship [ST/N003748/2]; NASA HSR grant [NNX16AM23G]; NSF CAREER Award [AGS-1054061]; NASA HGI grant [80NSSC18K0643]; NASA MMS GI grant [80NSSC18K1371]Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Ion-scale Electromagnetic Waves in the Inner Heliosphere

    Get PDF
    International audienceUnderstanding the physical processes in the solar wind and corona that actively contribute to heating, acceleration, and dissipation is a primary objective of NASA's Parker Solar Probe (PSP) mission. Observations of circularly polarized electromagnetic waves at ion scales suggest that cyclotron resonance and wave-particle interactions are dynamically relevant in the inner heliosphere. A wavelet-based statistical study of circularly polarized events in the first perihelion encounter of PSP demonstrates that transverse electromagnetic waves at ion resonant scales are observed in 30-50% of radial field intervals. Average wave amplitudes of approximately 4 nT are measured, while the mean duration of wave events is on the order of 20 s; however, long-duration wave events can exist without interruption on hour-long timescales. Determination of wave vectors suggests propagation parallel/antiparallel to the mean magnetic field. Though ion-scale waves are preferentially observed during intervals with a radial mean magnetic field, we show that measurement constraints, associated with single spacecraft sampling of quasi-parallel waves superposed with anisotropic turbulence, render the measured coherent ion-wave spectrum unobservable when the mean magnetic field is oblique to the solar wind flow; these results imply that the occurrence of coherent ion-scale waves is not limited to a radial field configuration. The lack of radial scaling of characteristic wave amplitudes and duration suggests that the waves are generated in situ through plasma instabilities. Additionally, observations of proton distribution functions indicate that temperature anisotropy may drive the observed ion-scale

    [Plasma 2020 Decadal] Disentangling the Spatiotemporal Structure of Turbulence Using Multi-Spacecraft Data

    Get PDF
    This white paper submitted for 2020 Decadal Assessment of Plasma Science concerns the importance of multi-spacecraft missions to address fundamental questions concerning plasma turbulence. Plasma turbulence is ubiquitous in the universe, and it is responsible for the transport of mass, momentum, and energy in such diverse systems as the solar corona and wind, accretion discs, planet formation, and laboratory fusion devices. Turbulence is an inherently multi-scale and multi-process phenomenon, coupling the largest scales of a system to sub-electron scales via a cascade of energy, while simultaneously generating reconnecting current layers, shocks, and a myriad of instabilities and waves. The solar wind is humankind's best resource for studying the naturally occurring turbulent plasmas that permeate the universe. Since launching our first major scientific spacecraft mission, Explorer 1, in 1958, we have made significant progress characterizing solar wind turbulence. Yet, due to the severe limitations imposed by single point measurements, we are unable to characterize sufficiently the spatial and temporal properties of the solar wind, leaving many fundamental questions about plasma turbulence unanswered. Therefore, the time has now come wherein making significant additional progress to determine the dynamical nature of solar wind turbulence requires multi-spacecraft missions spanning a wide range of scales simultaneously. A dedicated multi-spacecraft mission concurrently covering a wide range of scales in the solar wind would not only allow us to directly determine the spatial and temporal structure of plasma turbulence, but it would also mitigate the limitations that current multi-spacecraft missions face, such as non-ideal orbits for observing solar wind turbulence. Some of the fundamentally important questions that can only be addressed by in situ multipoint measurements are discussed

    Kinetic‐Scale Turbulence in the Venusian Magnetosheath

    Get PDF
    While not specifically designed as a planetary mission, NASA's Parker Solar Probe (PSP) mission uses a series of Venus gravity assists (VGAs) in order to reduce its perihelion distance. These orbital maneuvers provide the opportunity for direct measurements of the Venus plasma environment at high cadence. We present first observations of kinetic scale turbulence in the Venus magnetosheath from the first two VGAs. In VGA1, PSP observed a quasi‐parallel shock, ÎČ âˆŒ 1 magnetosheath plasma, and a kinetic range scaling of k−2.9. VGA2 was characterized by a quasi‐perpendicular shock with ÎČ âˆŒ 10, and a steep k−3.4 spectral scaling. Temperature anisotropy measurements from VGA2 suggest an active mirror mode instability. Significant coherent waves are present in both encounters at sub‐ion and electron scales. Using conditioning techniques to exclude these electromagnetic wave events suggests the presence of developed sub‐ion kinetic turbulence in both magnetosheath encounters

    The Gaia-ESO Survey: the selection function of the Milky Way field stars

    Get PDF
    The Gaia-ESO Survey was designed to target all major Galactic components (i.e. bulge, thin and thick discs, halo and clusters), with the goal of constraining the chemical and dynamical evolution of the Milky Way. This paper presents the methodology and considerations that drive the selection of the targeted, allocated and successfully observed Milky Way field stars. The detailed understanding of the survey construction, specifically the influence of target selection criteria on observed Milky Way field stars is required in order to analyse and interpret the survey data correctly. We present the target selection process for the Milky Way field stars observed with Very Large Telescope/Fibre Large Array Multi Element Spectrograph and provide the weights that characterize the survey target selection. The weights can be used to account for the selection effects in the Gaia-ESO Survey data for scientific studies. We provide a couple of simple examples to highlight the necessity of including such information in studies of the stellar populations in the Milky Way

    Southern Ocean pteropods at risk from ocean warming and acidification

    Get PDF
    Early life stages of marine calcifiers are particularly vulnerable to climate change. In the Southern Ocean aragonite undersaturation events and areas of rapid warming already occur and are predicted to increase in extent. Here, we present the first study to successfully hatch the polar pteropod Limacina helicina antarctica and observe the potential impact of exposure to increased temperature and aragonite undersaturation resulting from ocean acidification (OA) on the early life stage survival and shell morphology. High larval mortality (up to 39%) was observed in individuals exposed to perturbed conditions. Warming and OA induced extensive shell malformation and dissolution, respectively, increasing shell fragility. Furthermore, shell growth decreased, with variation between treatments and exposure time. Our results demonstrate that short-term exposure through passing through hotspots of OA and warming poses a serious threat to pteropod recruitment and long-term population viability

    Effects of isoflavones (soy phyto-estrogens) on serum lipids: a meta-analysis of randomized controlled trials

    Get PDF
    OBJECTIVES: To determine the effects of isoflavones (soy phyto-estrogens) on serum total cholesterol (TC), low density lipoprotein cholesterol (LDL), high density lipoprotein cholesterol (HDL) and triglyceride (TG). METHODS: We searched electronic databases and included randomized trials with isoflavones interventions in the forms of tablets, isolated soy protein or soy diets. Review Manager 4.2 was used to calculate the pooled risk differences with fixed effects model. RESULTS: Seventeen studies (21 comparisons) with 853 subjects were included in this meta-analysis. Isoflavones tablets had insignificant effects on serum TC, 0.01 mmol/L (95% CI: -0.17 to 0.18, heterogeneity p = 1.0); LDL, 0.00 mmol/L (95% CI: -0.14 to 0.15, heterogeneity p = 0.9); HDL, 0.01 mmol/L (95% CI: -0.05 to 0.06, heterogeneity p = 1.0); and triglyceride, 0.03 mmol/L (95% CI: -0.06 to 0.12, heterogeneity p = 0.9). Isoflavones interventions in the forms of isolated soy protein (ISP), soy diets or soy protein capsule were heterogeneous to combine. CONCLUSIONS: Isoflavones tablets, isolated or mixtures with up to 150 mg per day, seemed to have no overall statistical and clinical benefits on serum lipids. Isoflavones interventions in the forms of soy proteins may need further investigations to resolve whether synergistic effects are necessary with other soy components

    Highly structured slow solar wind emerging from an equatorial coronal hole

    Get PDF
    International audienceDuring the solar minimum, when the Sun is at its least active, the solar wind(1,2) is observed at high latitudes as a predominantly fast (more than 500 kilometres per second), highly Alfvenic rarefied stream of plasma originating from deep within coronal holes. Closer to the ecliptic plane, the solar wind is interspersed with a more variable slow wind(3) of less than 500 kilometres per second. The precise origins of the slow wind streams are less certain(4); theories and observations suggest that they may originate at the tips of helmet streamers(5,6), from interchange reconnection near coronal hole boundaries(7,8), or within coronal holes with highly diverging magnetic fields(9,10). The heating mechanism required to drive the solar wind is also unresolved, although candidate mechanisms include Alfven-wave turbulence(11,12), heating by reconnection in nanoflares(13), ion cyclotron wave heating(14) and acceleration by thermal gradients1. At a distance of one astronomical unit, the wind is mixed and evolved, and therefore much of the diagnostic structure of these sources and processes has been lost. Here we present observations from the Parker Solar Probe(15) at 36 to 54 solar radii that show evidence of slow Alfvenic solar wind emerging from a small equatorial coronal hole. The measured magnetic field exhibits patches of large, intermittent reversals that are associated with jets of plasma and enhanced Poynting flux and that are interspersed in a smoother and less turbulent flow with a near-radial magnetic field. Furthermore, plasma-wave measurements suggest the existence of electron and ion velocity-space micro-instabilities(10,16) that are associated with plasma heating and thermalization processes. Our measurements suggest that there is an impulsive mechanism associated with solar-wind energization and that micro-instabilities play a part in heating, and we provide evidence that low-latitude coronal holes are a key source of the slow solar wind

    Interacting with Fictions:The Role of Pretend Play in Theory of Mind Acquisition

    Get PDF
    Pretend play is generally considered to be a developmental landmark in Theory of Mind acquisition. The aim of the present paper is to offer a new account of the role of pretend play in Theory of Mind development. To this end I combine Hutto and Gallagher’s account of social cognition development with Matravers’ recent argument that the cognitive processes involved in engagement with narratives are neutral regarding fictionality. The key contribution of my account is an analysis of pretend play as interaction with fictions. I argue that my account offers a better explanation of existing empirical data on the development of children’s pretend play and Theory of Mind than the competing theories from Leslie, Perner and Harris
    • 

    corecore