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Evidence for electron Landau damping in space
plasma turbulence
C.H.K. Chen1, K.G. Klein2 & G.G. Howes 3

How turbulent energy is dissipated in weakly collisional space and astrophysical plasmas is a

major open question. Here, we present the application of a field-particle correlation technique

to directly measure the transfer of energy between the turbulent electromagnetic field and

electrons in the Earth’s magnetosheath, the region of solar wind downstream of the Earth’s

bow shock. The measurement of the secular energy transfer from the parallel electric field as

a function of electron velocity shows a signature consistent with Landau damping. This

signature is coherent over time, close to the predicted resonant velocity, similar to that seen

in kinetic Alfven turbulence simulations, and disappears under phase randomisation. This

suggests that electron Landau damping could play a significant role in turbulent plasma

heating, and that the technique is a valuable tool for determining the particle energisation

processes operating in space and astrophysical plasmas
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It is well-established that turbulence pervades space and
astrophysical plasmas, transferring energy from the large
scales at which it is injected down to the plasma microscales

where it can be dissipated. The resulting plasma heating is
thought to be dynamically important in a number of systems, e.g.,
the solar corona and solar wind1, the interstellar medium2, and
galaxy clusters3, although it is not yet known which physical
dissipation mechanisms are responsible. It is therefore a major
open question as to how turbulent plasma heating occurs,
although due to the weakly collisional nature of these plasmas, it
is inevitably through a series of different microphysical plasma
processes. In this paper, we apply a field-particle correlation
technique to in situ spacecraft data to investigate the first step in
the thermalisation process: the mechanism by which energy is
transferred from the turbulent electromagnetic field to the plasma
particles.

The solar wind provides an ideal opportunity to study turbu-
lent heating, due to the high-resolution in situ measurements
available, and several different mechanisms have been proposed.
Early suggestions4 invoked cyclotron damping to enable per-
pendicular ion energisation5–7. The realisation that the turbulence
could have a substantial k⊥ component led also to suggestions of
Landau damping8,9 and later work predicted that this would be
dominant over cyclotron damping10–12 due to the anisotropic
nature of the turbulent cascade13–15. Many models now incor-
porate the effect of both ion and electron Landau damping16–20,
although recent work has raised interesting questions about how
effective this is in turbulent systems21–24. Non-resonant
mechanisms have also been proposed, most notably stochastic
heating25–27, which leads to the broadening of particle distribu-
tions in a stochastic field. It has also been suggested that dis-
sipation is localised at structures, such as reconnecting current
sheets28,29, vortices30,31, and double layers32, although the ques-
tion remains which dissipation processes would occur within
such structures33–38.

Various observational evidence has been presented for the
above mechanisms, although to date this has been somewhat
indirect. For example, evidence for cyclotron damping has been
based on the wavenumber of the ion-scale break in the turbulence
spectrum4,39–43, the shape of contours in the ion distributions44,45,
or correlations between species temperatures and drifts46–48.
Similarly, evidence for stochastic heating has been based on
relationships between measured temperatures and turbulence
amplitudes49–51. Localised enhancements in temperature28,52,53

and work done on the particles28,29,53 have also been cited as
evidence for dissipation at structures.

In this paper, we present a direct measurement of the secular
transfer of energy from the turbulent electromagnetic field at
kinetic scales to the electrons as a function of the electron velo-
city. This velocity-space signature allows the different heating
mechanisms to be identified, and here is found to be consistent
with electron Landau damping.

Results
Data set. Data from the Magnetospheric Multiscale (MMS)
mission54 were used, when the spacecraft were in the Earth’s
magnetosheath on 16 October 2015 09:24:11–09:25:21. The
mean plasma parameters at this time were: magnetic field
strength B ≈ 39 nT, number density ni ≈ ne ≈ 14 cm−3, bulk
velocity ui ≈ ue ≈ 180 km s−1, and temperatures Tjji � 150 eV,
T⊥i ≈ 240 eV, Tjje � 22 eV, T⊥e ≈ 23 eV. These correspond to
average plasma betas βi ≈ 0.80 and βe ≈ 0.088 (where βs=
2μ0nskBTs/B2). Magnetic field data were measured by FGM55

and SCM56, electric field data by SDP57 and ADP58, and par-
ticle data by FPI59. All data in this paper are from MMS3 and

the turbulence measured during this time period was previously
characterised60.

Here, we focus on the energy transfer to the electrons, which
were measured at 30 ms resolution, resulting in a total of 2333
three-dimensional velocity distributions. The average of these,
f0e= 〈fe〉, is shown in Fig. 1a, in the frame in which the mean
electron bulk flow is zero and in a coordinate system in which v||
is parallel to the global mean field B0= 〈B〉, v? ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2?1 þ v2?2

p
,

and vth;e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTe=me

p
is the isotropic electron thermal speed.

In the conversion from measured energy bin to particle velocity,
the mean spacecraft potential (relative to the plasma) of +4.2 V
was subtracted to compensate for the energy gain of the electrons
arriving at the positively charged spacecraft. Note that data are
unavailable for the central part of the distribution with v≲0:5vth;e.

Measuring secular energy transfer. The energy transfer was
measured by calculating C′

Ejj;e
ðvÞ ¼ hqevjjEjjfei (see Equation (5)

of the Methods section) at each point of the measured electron
distributions, with the average taken over the whole interval. For
the parallel electric field E||, the time series of electric field vectors
(measured at ≈0.12 ms resolution) was first Lorentz transformed
to the zero mean bulk velocity frame61, averaged down to 30 ms
resolution, then the component parallel to B0 taken. The E||
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Fig. 1 Measured average electron distribution and field-particle energy
transfer rates. a Average electron distribution f0e. b Alternative energy
transfer rate C′

Ejj ;e
ðvÞ using fe and unfiltered E||. c Alternative energy transfer

rate using δfe and high-pass-filtered (at 1 Hz) E||
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measurement here remains above the instrumental noise level for
frequencies ≲100Hz, which covers the range used for the cor-
relation measurement. Since FPI was operating in interleave
mode, in which alternate distributions were sampled at different
points in velocity space59, C′

Ejj;e
ðvÞ was calculated separately for

each of the two sets of distributions. This results in an effective
lower time resolution of 60 ms (corresponding to a maximum
wavenumber kρi ≈ 34, where ρi is the ion gyroradius, under the
Taylor hypothesis) but greater coverage in velocity space when
recombined. The resulting energy transfer measure, combined,
binned, and averaged in ðvjj; v?Þ space, is shown in Fig. 1b. To
ensure reliability, distribution measurements with fewer than
three particle counts and greater than 20% data gaps in time were
excluded, leading to the reduced coverage.

Figure 1b shows a clear signature roughly antisymmetric about
v||= 0. However, this is likely due to the large-scale wave-like
oscillation that dominates the energy transfer62–64. As discussed
in the Methods section, part of the technique is to average out this
oscillation to leave the secular transfer; however, in a turbulent
spectrum, averaging over longer times leads to larger-scale
oscillations dominating the transfer measurement. Instead, the
E|| time series was high-pass filtered at 1 Hz to allow sufficient
averaging for fluctuations above this frequency, but eliminate
contamination from lower-frequency oscillations. This filtering
means that any form of energy transfer in modes below 1 Hz is
not measured by the technique. Together with the finite time
resolution of the data discussed earlier, this means that the
method is sensitive only to energy transfer in a specific range of
spacecraft-frame frequencies, corresponding to 2≲kρi≲34 under
the Taylor hypothesis, which covers the majority of the kinetic

range between the ion and electron gyroscales. In addition, the
fluctuating distribution δfe= fe− f0e was used, which removes the
constant velocity-space structure that does not contribute to the
small-scale energy transfer. The result is shown in Fig. 1c. It can
be seen that the peak is more than an order of magnitude smaller,
as expected for the secular transfer, and a qualitatively different
pattern emerges: a symmetric pair of bipolar signatures at the
thermal speed, evocative of Landau damping. As discussed in the
Methods section, other mechanisms would produce a qualita-
tively different signature.

To check whether this signature is coherent over time (which
it should be for secular transfer and not for oscillatory transfer),
the period was divided into ten subintervals and the same
analysis applied to each. Since the structure is mainly in v||,
a reduced energy transfer measure was calculated, C′

Ejj;e
ðvjjÞ ¼R

C′
Ejj;e

ðvÞ d2v?, which is shown in Fig. 2a as a function of time.
Due to the significant amount of averaging resulting in a less
noisy signal, this could now be converted to the energy transfer
rate specified in Equation (4) using the relation

CEjj;eðvjjÞ ¼ � vjj
2

∂C′
Ejj;e

ðvjjÞ
∂vjj

þ
C′
Ejj;e

ðvjjÞ
2

; ð1Þ

which is shown in Fig. 2b. It can be seen that the symmetric
bipolar pattern is indeed coherent over time, consistent with
secular energy transfer to the electrons. The time average is
shown in Fig. 2c, where the signatures consistent with electron
Landau damping are present at velocities � ± vth;e.

Finally, the curve in Fig. 2c was integrated over vjj to obtain the
net rate of secular transfer of energy density to the electrons
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Fig. 2 Reduced energy transfer rate measurements. a Alternative 1D energy transfer rate C′
Ejj ;e

ðvjjÞ as a function of time t. b 1D energy transfer rate CEjj;e ðvjjÞ
obtained from Equation (1). c CEjj;e ðvjjÞ averaged over time; a signature consistent with Landau damping can be seen
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CEjj;e � 3:4 ´ 10�12 kgm�1 s�3. Comparing this to the electron
thermal energy density, 32 nekBTe � 7:7 ´ 10�11 kgm�1 s�2, gives a
transfer timescale of 23 s, and comparing to the total thermal
energy density, which is ten times larger, gives 230 s. This value of
CEjj;e is six times larger than the equivalent perpendicular
quantity, CE? ;e, indicating a dominant parallel energy transfer
to electrons in this interval. It can also be compared to previously
computed magnetosheath turbulent cascade rates65, where a wide
variation of cascade rates were reported there in the range
� ½10�16; 10�12�kgm�1 s�3. The value of CEjj;e obtained here is at
the upper end of this range, consistent with the turbulence
amplitude here being comparable to the upper end of the range of
amplitudes65. This raises the possibility that a significant fraction
of turbulent energy is being transferred to electrons at kinetic
scales.

Comparison to expected resonant velocity. The question now
arises as to whether this signal occurs at the velocity expected for
Landau damping. To answer this, Fig. 3 shows numerical solu-
tions of the linear Vlasov−Maxwell system for the kinetic Alfvén
wave (KAW) obtained from the PLUME dispersion solver66. The
measured mean plasma parameters were used, along with kjjρi ¼
10�3 (the results are not very sensitive to this number as long as it
is ≪1). Previous analysis of the data interval has suggested that
the kinetic range fluctuations are low-frequency ðω � k?vth;iÞ
and anisotropic ðk? � kjjÞ, consistent with kinetic Alfvén tur-
bulence60. Figure 3a shows the total KAW damping rate nor-
malised to the wave frequency, −γ/ω, along with its separate
contributions from the ions and electrons. It can be seen that the
electron damping becomes strong ð�γ=ω � 0:1Þ at a wave-
number k?ρi � 20. Figure 3b shows the resonant velocity
ðvres ¼ ω=kjjÞ, which can be seen to be vres � vthjj;e at k?ρi � 20.
Therefore, the locations of the energy transfer in Fig. 2 are con-
sistent with expectations for Landau damping.

Quality checks. Several checks were performed to ensure that the
field-particle correlation technique produced a meaningful result.
Firstly, the analysis was repeated, but with a phase-randomised

version of the electric field measurement. To produce this, the
electric field time series was Fourier transformed, a different
random value chosen uniformly in the range [0, 2π] was added to
the phase at each frequency, and then the inverse Fourier
transform was applied. This results in a surrogate electric field
time series with the same power spectrum and autocorrelation
properties as the original67. The results of the method using
one realisation of the phase randomisation are shown in Fig. 4a,
b. It can be seen that the pattern is quite different to Fig. 2a, b:
the bipolar signatures are not present and the signal is not
coherent over time. This suggests that the signals presented in
Figs. 1 and 2 are indeed physical. An ensemble of 20 realisations
of the phase randomisation were performed and the mean and
standard deviation σ of the resulting CEjj;eðvjjÞ are shown in
Fig. 4c. This number of realisations was chosen to allow sufficient
convergence of the derived statistical quantities. The mean is
close to zero as expected and the amplitude of the real signal is
large compared to the standard deviation, ~2σ for v|| < 0 and ~4σ
for v|| > 0. Figure 3c shows that the phase angle between j|| (≈j||e at
these scales) and E|| is close to zero where the electron damping
becomes strong, so indeed we would expect the phase randomi-
sation to produce, on average, a smaller signal. Figure 4d shows
CEjj;e ¼

R
CEjj;eðvjjÞ dvjj ¼ hjjjeEjji as a function of time in com-

parison to the phase randomisations. It can be seen that the real
signal is consistently positive (indicating net energy transfer to
the particles), whereas the phase randomisations are distributed
about zero.

The existence of Landau damping as the cascade proceeds
towards electron scales can also be checked against the magnetic
field spectrum; if energy is being removed from the turbulence, a
steeper spectrum should result. The spectrum of magnetic
fluctuations PB, and its local power-law index α (calculated over
a sliding window of one decade) are shown in Fig. 5. If the
turbulence is sufficiently low-frequency, which would be
consistent with previous analysis60, the Taylor hypothesis can
be used to interpret this frequency spectrum as a wavenumber
spectrum. In the first decade of the kinetic range, α is comparable
to predictions for kinetic Alfvén turbulence (−7/3 for a regular
cascade12 and −8/3 for an intermittent one68), but by kρi ≈ 15
(kde ≈ 0.4; kρe ≈ 0.1) it has steepened to a value of −3.3. This is
significantly steeper than any current prediction for a dissipation-
free cascade at these scales, consistent with a damping mechanism
being in operation. Finally, as the cascade passes through the
electron inertial scale kde= 1, the spectrum steepens again,
consistent with expectations for an inertial kinetic Alfvén
turbulence cascade60,69. Note also that for most of the frequency
range, α is gradually decreasing rather than constant; while this is
partly due to the finite width of the sliding window and the
smallness of the frequency ranges, it is also consistent with the
presence of damping progressively steepening the spectrum.

Discussion
The results presented in this paper constitute direct evidence for
the presence of Landau damping in a turbulent space plasma, and
suggest that it plays a significant role in the dissipation process.
The secular energy transfer from the electric field to the electrons
has been isolated from the oscillatory component (which has been
measured previously in a KAW70) and the electron distribution is
seen to be gaining energy density above the resonant velocity and
losing it below, with an overall net gain (Fig. 2). The resonance
appears rather broad, with the signal covering a width compar-
able to or greater than the thermal speed (rather than a small
fraction of it), as might be expected in strong turbulence10,71. The
observed velocity-space signature is consistent with simulations
of Landau damping in both a single KAW and strongly nonlinear
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kinetic Alfvén turbulence64, and in the absence of other processes
would correspond to a flattening of the distribution at the reso-
nant velocity. However, additional processes, e.g. a velocity-space
cascade12,72,73 and/or collisions12,18, would act to thermalise the
distribution, so such plateaus may not be observable in practice.

An important question for understanding the kinetic turbu-
lence itself is the degree to which Landau damping steepens the
energy spectrum11,17,68,72–75. While fully answering this is
beyond the scope of the current work, we note that the magnetic
spectrum is significantly steeper than the cascade predictions at
the scale where damping becomes strong (Fig. 5). It is also of
interest to note that the energy transfer is not uniform, fluctuating
significantly in magnitude (Fig. 4d) but maintaining a Landau-
like signature (Fig. 2b). This is consistent with suggestions that
Landau damping is stronger at turbulent structures34,38, and that
in general dissipation in turbulence is intermittent in nature76–79.

Finally, we note that the results of the application of this
technique are promising for its use in identifying the processes

involved in turbulent dissipation. Although here we have deter-
mined the parallel energy transfer to electrons, future work could
explore the perpendicular transfer and also the transfer to ions.
With sufficiently advanced instrumentation on future spacecraft,
this would allow the relative importance of the different
mechanisms to be understood, as well as the energy partition
between species and the route by which heating is achieved in
space and astrophysical plasmas.

Methods
Field-particle correlation technique. The method for measuring the energy
transfer is based on a field-particle correlation technique38,62–64,80 and briefly
summarised here. The Vlasov equation,

∂fs
∂t

þ v � ∇fs þ
qs
ms

Eþ v ´Bð Þ � ∂fs
∂v

¼ 0; ð2Þ

describes the evolution of the particle distribution function fs in a collisionless
plasma, where qs and ms are the charge and mass of species ‘s’, v is the velocity, and
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E and B are the electric and magnetic fields. Multiplying by the particle kinetic
energy, an equation for the rate of change of phase-space particle energy density
ws ¼ 1

2msv
2fs is obtained,

∂ws

∂t
¼ �v � ∇ws �

qsv
2

2
E � ∂fs

∂v
� qsv

2

2
v ´Bð Þ � ∂fs

∂v
: ð3Þ

When integrated over both position and velocity, only the second term on the
right-hand side of Equation (3) is non-zero, showing that any net change in the
particle energy is due to the electric field. This term has contributions from all
electric field components; however, here we focus on the energy transfer parallel to
the magnetic field associated with Landau damping.

The average rate of change of phase-space energy density for species ‘s’ due to
the parallel electric field E|| is given by

CEjj ;sðvÞ ¼ �
qsv

2
jj

2
Ejj

∂fs
∂vjj

* +
; ð4Þ

where the angular brackets denote an average over space and/or time. It can be
seen that this is effectively an un-normalised correlation between E|| and the
parallel gradient of the distribution function. Since such gradients are challenging
to measure, we also define an alternative correlation,

C′
Ejj ;s

ðvÞ ¼ qsvjjEjjfs
D E

: ð5Þ

When integrated over velocity space, Equations (4) and (5) are equivalent and
correspond to the average net electromagnetic work done on the particles by E||,Z

CEjj;sðvÞ d3v ¼
Z

C′
Ejj ;s

ðvÞd3v ¼ jjjsEjj
D E

; ð6Þ

where jjjs is the parallel current density of species ‘s’.
An important part of the technique is the separation of the oscillatory transfer

of energy back and forth between particles and fields due to undamped wave-like
motions and the secular transfer due to damping (or instability). This is achieved
by ensuring that the averaging period is much larger than the relevant wavelength
and/or wave period.

In their unintegrated form, these correlation measures provide the crucial
information about where in velocity space the secular energy transfer is occurring.
Their application to simulations has shown that: (a) the oscillatory transfer can be
successfully averaged out to leave the secular transfer, (b) a bipolar signature at the
resonant velocity is produced for Landau damping of a single wave, (c) a
qualitatively similar signature persists in strong low-frequency turbulence, and (d)
the alternative measure (Equation (5)) indicates where in velocity space the transfer
happens, although with a different characteristic signature62–64. Energy transfer
mechanisms other than Landau damping are expected to produce significantly
different correlation signatures, e.g., cyclotron damping and stochastic heating
would appear as perpendicular structure in the perpendicular correlations.

Therefore, this technique allows the different mechanisms to be distinguished
observationally.

Data availability
The data used for this study are available at the MMS Science Data Center (https://
lasp.colorado.edu/mms/sdc/).
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