187 research outputs found

    A Public Option for Employer Health Plans

    Get PDF
    Following the 2020 presidential election, health care reform discussions have centered on two competing proposals: Medicare for All and an individual public option (“Medicare for all who want it”). Interestingly, these two proposals take starkly different approaches to employer-provided health coverage, long the bedrock of the U.S. health care system and the stumbling block to many prior reform efforts. Medicare for All abolishes employer-provided coverage, while an individual public option leaves it untouched.This Article proposes a novel solution that finds a middle ground between these two extremes: an employer public option. In contrast to the more familiar public option proposal, which would offer government sponsored health insurance directly to individuals, our plan creates a public option for employers, who can select a public plan—based on Medicare and altered to meet the needs of working populations—instead of a private health plan for their employees. Employer-based private health coverage is in decline and increasingly leaves workers vulnerable. Our proposal offers a gradual way to loosen reliance on this system.We review the policy, regulatory, fiscal, and business arguments in favor of this form of public option, which we argue is less disruptive than Medicare for All but more impactful than an individual public option. Because employer take up would be gradual and voluntary, our plan has lower fiscal costs and should face less resistance from employees and vested interests than Medicare for All. Over time, if the plan meets employers’ and employees’ needs, more people would be covered by a public option, moving away from over-reliance on private employer plans and toward something akin to Medicare-for-Many in a less politically, legally, and fiscally fraught way

    EUVE Observations of the Magnetic Cataclysmic Variable QQ Vulpeculae

    Get PDF
    We present simultaneous X-ray (lambda_peak ~ 44A) and EUV (lambda_peak = 89A) light curves for the magnetic cataclysmic variable QQ Vulpeculae, obtained with the EUVE satellite. We find that the unique shape of the X-ray light curve is different from previously obtained X-ray light curves of QQ Vul and provides evidence for two-pole accretion. Detailed examination of the photometric data indicates that QQ Vul undergoes a stellar eclipse of the X-ray emitting region, indicative of a high binary inclination. We discuss possible implications for the nature of this system given the observed shape of its EUV and X-ray light curves.Comment: 12 pages including 4 figures, accepted to PAS

    Population neuroimaging:generation of a comprehensive data resource within the ALSPAC pregnancy and birth cohort

    Get PDF
    Neuroimaging offers a valuable insight into human brain development by allowing in vivo assessment of structure, connectivity and function. Multimodal neuroimaging data have been obtained as part of three sub-studies within the Avon Longitudinal Study of Parents and Children, a prospective multigenerational pregnancy and birth cohort based in the United Kingdom. Brain imaging data were acquired when offspring were between 18 and 24 years of age, and included acquisition of structural, functional and magnetization transfer magnetic resonance, diffusion tensor, and magnetoencephalography imaging. This resource provides a unique opportunity to combine neuroimaging data with extensive phenotypic and genotypic measures from participants, their mothers, and fathers

    Prognostic value of test(s) for O6-methylguanine–DNA methyltransferase (MGMT) promoter methylation for predicting overall survival in people with glioblastoma treated with temozolomide

    Get PDF
    BACKGROUND: Glioblastoma is an aggressive form of brain cancer. Approximately five in 100 people with glioblastoma survive for five years past diagnosis. Glioblastomas that have a particular modification to their DNA (called methylation) in a particular region (the O(6)‐methylguanine–DNA methyltransferase (MGMT) promoter) respond better to treatment with chemotherapy using a drug called temozolomide. OBJECTIVES: To determine which method for assessing MGMT methylation status best predicts overall survival in people diagnosed with glioblastoma who are treated with temozolomide. SEARCH METHODS: We searched MEDLINE, Embase, BIOSIS, Web of Science Conference Proceedings Citation Index to December 2018, and examined reference lists. For economic evaluation studies, we additionally searched NHS Economic Evaluation Database (EED) up to December 2014. SELECTION CRITERIA: Eligible studies were longitudinal (cohort) studies of adults with diagnosed glioblastoma treated with temozolomide with/without radiotherapy/surgery. Studies had to have related MGMT status in tumour tissue (assessed by one or more method) with overall survival and presented results as hazard ratios or with sufficient information (e.g. Kaplan‐Meier curves) for us to estimate hazard ratios. We focused mainly on studies comparing two or more methods, and listed brief details of articles that examined a single method of measuring MGMT promoter methylation. We also sought economic evaluations conducted alongside trials, modelling studies and cost analysis. DATA COLLECTION AND ANALYSIS: Two review authors independently undertook all steps of the identification and data extraction process for multiple‐method studies. We assessed risk of bias and applicability using our own modified and extended version of the QUality In Prognosis Studies (QUIPS) tool. We compared different techniques, exact promoter regions (5'‐cytosine‐phosphate‐guanine‐3' (CpG) sites) and thresholds for interpretation within studies by examining hazard ratios. We performed meta‐analyses for comparisons of the three most commonly examined methods (immunohistochemistry (IHC), methylation‐specific polymerase chain reaction (MSP) and pyrosequencing (PSQ)), with ratios of hazard ratios (RHR), using an imputed value of the correlation between results based on the same individuals. MAIN RESULTS: We included 32 independent cohorts involving 3474 people that compared two or more methods. We found evidence that MSP (CpG sites 76 to 80 and 84 to 87) is more prognostic than IHC for MGMT protein at varying thresholds (RHR 1.31, 95% confidence interval (CI) 1.01 to 1.71). We also found evidence that PSQ is more prognostic than IHC for MGMT protein at various thresholds (RHR 1.36, 95% CI 1.01 to 1.84). The data suggest that PSQ (mainly at CpG sites 74 to 78, using various thresholds) is slightly more prognostic than MSP at sites 76 to 80 and 84 to 87 (RHR 1.14, 95% CI 0.87 to 1.48). Many variants of PSQ have been compared, although we did not see any strong and consistent messages from the results. Targeting multiple CpG sites is likely to be more prognostic than targeting just one. In addition, we identified and summarised 190 articles describing a single method for measuring MGMT promoter methylation status. AUTHORS' CONCLUSIONS: PSQ and MSP appear more prognostic for overall survival than IHC. Strong evidence is not available to draw conclusions with confidence about the best CpG sites or thresholds for quantitative methods. MSP has been studied mainly for CpG sites 76 to 80 and 84 to 87 and PSQ at CpG sites ranging from 72 to 95. A threshold of 9% for CpG sites 74 to 78 performed better than higher thresholds of 28% or 29% in two of three good‐quality studies making such comparisons

    Calorie restriction activates new adult born olfactory‐bulb neurones in a ghrelin‐dependent manner but acyl‐ghrelin does not enhance subventricular zone neurogenesis

    Get PDF
    The ageing and degenerating brain show deficits in neural stem/progenitor cell (NSPC) plasticity that are accompanied by impairments in olfactory discrimination. Emerging evidence suggests that the gut hormone ghrelin plays an important role in protecting neurones, promoting synaptic plasticity and increasing hippocampal neurogenesis in the adult brain. In the present study, we investigated the role of ghrelin with respect to modulating adult subventricular zone (SVZ) NSPCs that give rise to new olfactory bulb (OB) neurones. We characterised the expression of the ghrelin receptor, growth hormone secretagogue receptor (GHSR), using an immunohistochemical approach in GHSR‐eGFP reporter mice to show that GHSR is expressed in several regions, including the OB but not in the SVZ of the lateral ventricle. These data suggest that acyl‐ghrelin does not mediate a direct effect on NSPC in the SVZ. Consistent with these findings, treatment with acyl‐ghrelin or genetic silencing of GHSR did not alter NSPC proliferation within the SVZ. Similarly, using a bromodeoxyuridine pulse‐chase approach, we show that peripheral treatment of adult rats with acyl‐ghrelin did not increase the number of new adult‐born neurones in the granule cell layer of the OB. These data demonstrate that acyl‐ghrelin does not increase adult OB neurogenesis. Finally, we investigated whether elevating ghrelin indirectly, via calorie restriction (CR), regulated the activity of new adult‐born cells in the OB. Overnight CR induced c‐Fos expression in new adult‐born OB cells but not in developmentally born cells, whereas neuronal activity was absent following re‐feeding. These effects were not present in ghrelin−/− mice, suggesting that adult‐born cells are uniquely sensitive to changes in ghrelin mediated by fasting and re‐feeding. In summary, ghrelin does not promote neurogenesis in the SVZ and OB; however, new adult‐born OB cells are activated by CR in a ghrelin‐dependent manner

    Transcriptome-wide Mendelian randomization study prioritising novel tissue-dependent genes for glioma susceptibility.

    Get PDF
    Genome-wide association studies (GWAS) have discovered 27 loci associated with glioma risk. Whether these loci are causally implicated in glioma risk, and how risk differs across tissues, has yet to be systematically explored. We integrated multi-tissue expression quantitative trait loci (eQTLs) and glioma GWAS data using a combined Mendelian randomisation (MR) and colocalisation approach. We investigated how genetically predicted gene expression affects risk across tissue type (brain, estimated effective n = 1194 and whole blood, n = 31,684) and glioma subtype (all glioma (7400 cases, 8257 controls) glioblastoma (GBM, 3112 cases) and non-GBM gliomas (2411 cases)). We also leveraged tissue-specific eQTLs collected from 13 brain tissues (n = 114 to 209). The MR and colocalisation results suggested that genetically predicted increased gene expression of 12 genes were associated with glioma, GBM and/or non-GBM risk, three of which are novel glioma susceptibility genes (RETREG2/FAM134A, FAM178B and MVB12B/FAM125B). The effect of gene expression appears to be relatively consistent across glioma subtype diagnoses. Examining how risk differed across 13 brain tissues highlighted five candidate tissues (cerebellum, cortex, and the putamen, nucleus accumbens and caudate basal ganglia) and four previously implicated genes (JAK1, STMN3, PICK1 and EGFR). These analyses identified robust causal evidence for 12 genes and glioma risk, three of which are novel. The correlation of MR estimates in brain and blood are consistently low which suggested that tissue specificity needs to be carefully considered for glioma. Our results have implicated genes yet to be associated with glioma susceptibility and provided insight into putatively causal pathways for glioma risk

    Systems Analysis of miRNA Biomarkers to Inform Drug Safety

    Get PDF
    microRNAs (miRNAs or miRs) are short non-coding RNA molecules which have been shown to be dysregulated and released into the extracellular milieu as a result of many drug and non-drug-induced pathologies in different organ systems. Consequently, circulating miRs have been proposed as useful biomarkers of many disease states, including drug-induced tissue injury. miRs have shown potential to support or even replace the existing traditional biomarkers of drug-induced toxicity in terms of sensitivity and specificity, and there is some evidence for their improved diagnostic and prognostic value. However, several pre-analytical and analytical challenges, mainly associated with assay standardization, require solutions before circulating miRs can be successfully translated into the clinic. This review will consider the value and potential for the use of circulating miRs in drug-safety assessment and describe a systems approach to the analysis of the miRNAome in the discovery setting, as well as highlighting standardization issues that at this stage prevent their clinical use as biomarkers. Highlighting these challenges will hopefully drive future research into finding appropriate solutions, and eventually circulating miRs may be translated to the clinic where their undoubted biomarker potential can be used to benefit patients in rapid, easy to use, point-of-care test systems
    • 

    corecore