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Transcriptome‑wide Mendelian 
randomization study prioritising 
novel tissue‑dependent genes 
for glioma susceptibility
Jamie W. Robinson1,7*, Richard M. Martin1,2,3,7, Spiridon Tsavachidis4, Amy E. Howell1, 
Caroline L. Relton1, Georgina N. Armstrong5, Melissa Bondy5, Jie Zheng1,7 & 
Kathreena M. Kurian1,6,7*

Genome-wide association studies (GWAS) have discovered 27 loci associated with glioma risk. 
Whether these loci are causally implicated in glioma risk, and how risk differs across tissues, has yet 
to be systematically explored. We integrated multi-tissue expression quantitative trait loci (eQTLs) 
and glioma GWAS data using a combined Mendelian randomisation (MR) and colocalisation approach. 
We investigated how genetically predicted gene expression affects risk across tissue type (brain, 
estimated effective n = 1194 and whole blood, n = 31,684) and glioma subtype (all glioma (7400 cases, 
8257 controls) glioblastoma (GBM, 3112 cases) and non-GBM gliomas (2411 cases)). We also leveraged 
tissue-specific eQTLs collected from 13 brain tissues (n = 114 to 209). The MR and colocalisation results 
suggested that genetically predicted increased gene expression of 12 genes were associated with 
glioma, GBM and/or non-GBM risk, three of which are novel glioma susceptibility genes (RETREG2/
FAM134A, FAM178B and MVB12B/FAM125B). The effect of gene expression appears to be relatively 
consistent across glioma subtype diagnoses. Examining how risk differed across 13 brain tissues 
highlighted five candidate tissues (cerebellum, cortex, and the putamen, nucleus accumbens and 
caudate basal ganglia) and four previously implicated genes (JAK1, STMN3, PICK1 and EGFR). These 
analyses identified robust causal evidence for 12 genes and glioma risk, three of which are novel. 
The correlation of MR estimates in brain and blood are consistently low which suggested that tissue 
specificity needs to be carefully considered for glioma. Our results have implicated genes yet to be 
associated with glioma susceptibility and provided insight into putatively causal pathways for glioma 
risk.

Gliomas are the largest group of intrinsic brain tumours, with age-adjusted incidence rates ranging from 4.67 to 
5.73 per 100,0001. Furthermore, malignant gliomas cause significant years of life lost compared with other can-
cer types—about 20 years of life lost on average—due to late diagnosis and poor treatment outcomes2. Broadly, 
gliomas can be subclassified as glioblastoma (GBM, World Health Organisation (WHO) grade IV), which are 
the most aggressive subtype with a relatively short clinical overall survival, and what is termed non-GBM, lower-
grade WHO grade II and III gliomas which have longer survival times. This lower-grade glioma group has not 
been precisely defined in our dataset but may be presumed to include mostly diffuse astrocytoma, anaplastic 
astrocytoma, oligodendroglioma and anaplastic oligodendroglioma. To date, there are only two broadly accepted 
risk factors for glioma. The first, exposure to ionising radiation, accounts for only a small portion of cases3. The 
second includes rare heritable genetic factors. The latest glioma genome-wide association study (GWAS) identi-
fied 27 loci that are associated with glioma risk, but it is estimated that we have uncovered only about a third 
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of the risk posed by familial or inheritable factors (27% for GBM and 37% for non-GBM)4, indicating a large 
portion of genetic glioma risk is still to be uncovered.

Investigating and understanding how genes are differentially expressed in tumour subtypes has led to a better 
understanding of gliomagenesis through potentially related mechanisms and pathways and has also improved 
clinical outcomes for patients due to differential treatments. Previous studies have shown that genes are differen-
tially expressed in glioma dependent on subtype5–10. Furthermore, gene expression profiling was proposed as a 
better method of diagnosis over the previous clinical practice of histological grading because classification based 
on gene expression seemed to better predict for survival6,8,11. In 2016, the WHO classification for central nervous 
system tumours updated their diagnostic rubric to include analysis of the tumour genome12. It is likely that in 
the latest WHO guidelines, which at the time of writing are undergoing consultation, will still include genetic 
diagnostic and prognostic biomarkers to inform glioma classification and outcome13. Whilst including genetic 
factors into the classification criteria has seen measurable benefits for patients, functional studies have been 
limited and it is not known if certain mutations are merely correlated with gliomagenesis and subtype differentia-
tion or play a causal role in risk. How genetic markers differ by subtype diagnosis is therefore important both to 
elucidating mechanisms of glioma risk and development, and to further improve clinical outcomes for patients.

In this study, we utilise Mendelian randomisation (MR)—an established instrumental variable method—to 
assess the causal relationship between genetically predicted gene expression on glioma subtype risk14. MR suf-
fers less from biases, such as reverse causation and confounding, that invariably limit causal inference in tra-
ditional epidemiological studies14,15. Statistical colocalisation is a method that can identify whether a putative 
causal genetic variant is shared by two traits—a necessary condition for causality16. Use of a combined MR and 
colocalisation pipeline can strengthen causal inferences by discounting MR results which arise due to confound-
ing through linkage disequilibrium (LD)—which can arise when another genetic variant in high LD with the 
variant of interest is also associated with the outcome conditional on the exposure and which MR struggles to 
differentiate17–19. Integrating MR analyses with expression data from brain tissues provides insight into how 
tissue-specific gene expression may differentially alter glioma risk across the brain. These data are linked to eQTLs 
derived from blood to determine how the risk profile for glioma differs between brain tissue and whole blood.

Results
The pipeline for our analyses is described in Fig. 1. In total, our MR analysis of brain and blood eQTLs identified 
34 associations that met at least the suggestive P value threshold (P < 9.49 × 10–5) for 17 genes associated with 
risk of glioma, GBM or non-GBM (Fig. 2). Altogether, six genes were instrumented by eQTLs in blood and 12 
genes had eQTLs from brain tissue—one gene, JAK1, had an associated eQTL in both brain and blood. We found 
that 20 associations had strong evidence of colocalisation (H4 ≥ 80%, see “Methods” section for explanation), 4 
associations had moderate evidence (80% > H4 ≥ 50%) and 10 associations had weak evidence (H4 < 50%) (Sup-
plementary Table S1a). Steiger filtering revealed the direction of the causal estimate was correctly orientated 
from gene expression to subtype diagnosis in 29 associations; the remaining five showed an uncertain result due 
to the P value for Steiger filtering not reaching 0.05. Overall, 17 tissue-subtype associations for 12 genes showed 
robust causal evidence from the MR and colocalisation analyses and passed the Steiger filtering analysis. These 
17 associations and 12 genes formed our main results, are presented in Table 1, and were subjected to the tissue-
specific analyses. All results for sensitivity analyses are described in Supplementary Table S1b.

Comparing our results with previously identified GWAS associations (noted in a review conducted by Kin-
nersley et al.20) revealed that RETREG2 (FAM134A), FAM178B and MVB12B (FAM125B) are putative novel 
genes implicated in glioma risk that are not also located on a known glioma risk locus and formed part of our 
main results. The remaining results have been previously implicated in glioma risk through GWAS associations 
or are located on a known susceptibility locus.

Figure 3 shows the MR effect estimates for each of the 12 genes and all glioma, GBM and non-GBM subtypes. 
The direction and magnitude of the estimated causal effect broadly agreed across all genes and subtypes. However, 
the non-GBM results were noticeably attenuated, for example, in the case of JAK1.

To examine how tissue-specific gene expression affected glioma risk, the 12 genes which formed our main 
results were systematically linked to eQTLs across 13 brain tissues using GTEx v8 data. The effects of tissue-
specific expression of most genes were assessed using MR in 8 to 13 tissues (mean = 10 tissues) except for ABCB6, 
which had data in four tissues (Supplementary Table S2). Full results for the tissue-specific MR analysis are in 
Supplementary Table S3a. These results broadly agreed with the main MR analysis, though results were attenuated 
due to the smaller sample sizes present in the GTEx v8 dataset. Applying the same threshold for the discovery 
MR analysis (P < 7.30 × 10–6) revealed that 56% of the results arise in five tissues: putamen (basal ganglia) (12%), 
cortex (11%), cerebellum (11%), caudate (basal ganglia) (11%) and nucleus accumbens (basal ganglia) (11%) 
(Supplementary Table S3b). Furthermore, 100% of these results arose due to four genes: JAK1, STMN3, PICK1 
and EGFR (Supplementary Table S3c). The tissue-specific analyses also provided evidence of replication for these 
same four genes as they had strong evidence of both MR and colocalisation and also passed the Steiger filtering 
sensitivity analysis in at least one tissue.

Two tissue-specific results showed evidence of high heterogeneity. These were EGFR for all glioma (Cochran’s 
Q = 155.96, P = 1.72 × 10–28) and GBM (Cochran’s Q = 162.38, P = 3.49 × 10–27) subtype analyses (Supplementary 
Table S4). Examination of the EGFR SNPs’ Z-scores highlighted three tissues (hippocampus, hypothalamus and 
substantia nigra) whereby the Z-score of the instrumented SNP was in the opposite direction (positive Z-scores) 
compared to the remaining 10 SNPs in other tissues (negative Z-scores) (Supplementary Table S5). Only PICK1 
showed potential tissue-specific expression with a tau-score of 0.78 (Supplementary Table S4).

Finally, we compared effect estimates from the MR analysis of the same gene expressed in brain and blood 
tissues on glioma risk. We applied four P value thresholds (P < 0.1, 0.05, 0.01, 0.005) to examine whether the 
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strength of the MR association influences the correlation between estimates in brain and blood tissues. Over-
all, we observed a low correlation between brain and blood MR results (Pearson correlation = 0.18, number of 
genes = 632) at the highest P value threshold (P < 0.1). After applying the more stringent threshold (P < 0.005), 
the correlation increased but remained low (Pearson correlation = 0.21, number of genes = 45). These results are 
shown in Fig. 4.

Figure 1.   Schematic of the analysis pipeline we employed for this study.
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Discussion
In this study, we combined MR and colocalisation analyses to estimate the genetically predicted gene expres-
sion on glioma risk which provided causal evidence for 12 genes. Three of these genes are novel in the context 
of glioma risk. Overall, these results were robust to sensitivity analyses, including Steiger filtering and tissue-
specific analyses.

Figure 2.   Volcano plot of all results from the main MR analysis of brain and blood eQTLs and all glioma. 
The horizontal dot-dashed line represents the Bonferroni-corrected P value threshold (P < 7.30 × 10–6) and the 
horizontal dashed line is the suggestive P value threshold (P < 9.49 × 10–5). Genes are labelled if they pass at least 
the suggestive threshold.

Table 1.   Main associations which showed robust evidence from the Mendelian randomisation, colocalisation 
and Steiger filtering analyses. The colocalisation result for a single, shared causal variant between the gene and 
all glioma is provided (“H4 (%)”, see “Methods” section). Steiger filtering showed the correct orientation for the 
direction of effect between gene expression and subtype risk for all results in this table.

Gene SNP(s) Tissue Subtype OR (95% CI) P value H4 (%) Steiger P value

ABCB6 rs75450661 Brain All glioma 0.57 (0.44, 0.74) 2.20 × 10–5 97 7.41 × 10–6

BAIAP2L2 rs1004764 Brain
All glioma 0.65 (0.55, 0.78) 1.62 × 10–6 96 2.36 × 10–10

GBM 0.60 (0.49, 0.73) 2.85 × 10–7 81 1.25 × 10–9

EGFR rs6979446, rs759170 Brain GBM 0.45 (0.38, 0.53) 9.99 × 10–20 81 3.53 × 10–6

FAM178B rs13407036 Brain All glioma 1.47 (1.23, 1.77) 3.59 × 10–5 94 1.97 × 10–16

JAK1 rs2780902 Brain
All glioma 1.21 (1.13, 1.29) 6.95 × 10–8 81 6.89 × 10–139

GBM 1.27 (1.17, 1.37) 1.56 × 10–9 95 1.84 × 10–134

MVB12B rs4837096 Brain All glioma 1.24 (1.12, 1.38) 5.27 × 10–5 97 2.53 × 10–23

PANK4 rs2985862 Blood All glioma 0.46 (0.32, 0.67) 4.30 × 10–5 97 4.62 × 10–10

PICK1 rs5756894 Brain
All glioma 1.72 (1.39, 2.14) 8.82 × 10–7 97 4.34 × 10–7

GBM 1.96 (1.54, 2.51) 6.60 × 10–8 92 2.13 × 10–6

PRLR rs67975005 Brain All glioma 0.66 (0.54, 0.82) 9.33 × 10–5 91 1.13 × 10–7

RETREG2 rs1996719 Brain
All glioma 0.68 (0.57, 0.80) 9.54 × 10–6 98 7.90 × 10–11

GBM 0.67 (0.55, 0.81) 6.13 × 10–5 95 9.91 × 10–11

STMN3 rs6011016 Brain
All glioma 0.36 (0.29, 0.46) 1.44 × 10–16 96 1.44 × 10–16

GBM 0.29 (0.22, 0.38) 4.55 × 10–19 97 7.88 × 10–3

TP53 rs35850753 Blood Non-GBM 0.17 (0.09, 0.32) 9.61 × 10–8 98 3.35 × 10–2
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Figure 3.   Forest plot of Mendelian randomisation results for the 12 genes which had robust MR and 
colocalisation evidence and also passed the Steiger filtering analysis.

Figure 4.   Systematic comparison between the MR results from brain tissues and blood. Any eQTL that 
appeared in both brain and blood datasets was included in this analysis. We plotted the odds ratios for blood 
against brain, deciding which results to include based on a P value cut-off: (a) P < 0.1, (b) P < 0.05, (c) P < 0.001 
and (d) P < 0.005. Labels are provided for genes which had an association that passed at least the suggestive P 
value threshold (P < 9.49 × 10–5).
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RETREG2 (or FAM134A), FAM178B and MVB12B appear to be novel findings related to glioma risk. Reticu-
lophagy Regulator Family Member 2 (RETREG2, FAM134A) is a protein-coding gene whose function is largely 
unknown. Examination of the Human Protein Atlas reveals that expression of RETREG2 RNA and protein is 
primarily located in the brain and testes, though tissue specificity is low21. Family with Sequence Similarity 178 
Member B (FAM178B) is another protein-coding gene with an undocumented function. It is an important paral-
ogue of gene SLF2 whose protein plays a role in the DNA damage response. Finally, Multivesicular Body Subunit 
12B (MVB12B, FAM125B) is a regulator of vesicle trafficking and has been implicated in lipid and ubiquitin 
binding. Overexpression of this gene and its protein inhibits HIV-1 infectivity by regulating ESCRT (endosomal 
sorting complex required for transport-I)-mediated virus budding22. A 2014 study created a nine-gene-signature 
panel, which included MVB12B, that accurately predicted prognosis for glioma patients, further implicating 
the gene’s role in glioma biology23. Further research into these genes is warranted to provide replication and to 
elucidate potential pathways by which these genes affect glioma risk.

When considering differential risk across subtype diagnosis, our MR results showed agreement in the direc-
tion of effect for risk of all glioma, GBM and non-GBM. However, we also found that associations with non-
GBM risk tended to be weaker in magnitude than associations with the other two subtypes of glioma and were 
generally attenuated. Case numbers are broadly similar—3112 GBM cases versus 2411 non-GBM cases—but may 
still be underpowered in the non-GBM analysis. This is evidenced by the consistently larger P values for the MR 
results of the non-GBM analysis when compared to the GBM analysis. Whether this attenuation is due to the 
heterogeneous nature of brain tumours, or due to the lack of power in the subtype analysis, requires follow-up 
analyses in larger datasets. Overall, however, there is little evidence to conclude there exists a large difference in 
the gene expression risk profile of GBM and non-GBM tumours. Therefore, future studies in this area may seek 
to consolidate data independent of subtype diagnosis so that larger statistical power may be achieved.

Gliomas may develop across the entirety of the central nervous system but are generally found in the cer-
ebrum, particularly the frontal and temporal lobe, and less commonly in the cerebellum depending on the age 
of the patient24. We sought to determine how genetically predicted gene expression in the 13 brain tissue types 
collected by GTEx v825 compared to the anatomical regions within which tumours are found. The 12 genes 
that formed our main results were matched to, on average, an eQTL in 10 brain tissues allowing for a broad 
investigation on how glioma risk is affected by gene expression in disparate tissues. Applying MR and a similar 
P value threshold (P < 7.30 × 10–6) revealed that 56% of the results that met that threshold arise in five of the 13 
tissues. Two of these are common/uncommon tissues for glioma (cortex (11%), cerebellum (11%), respectively). 
The other three tissues were from the deep brain and are considered rarer locations for glioma (putamen (basal 
ganglia) (12%), caudate (basal ganglia) (11%) and nucleus accumbens (basal ganglia) (11%)) (Supplementary 
Table S3b). These analyses provided evidence that gene expression in these five tissues potentially drives glioma 
risk and, owing to the diffusive nature of the tumours, are then found elsewhere in the brain. Furthermore, 100% 
of these results arose due to four genes: JAK1, STMN3, PICK1 and EGFR (Supplementary Table S3c) providing 
evidence of validation and highlighting these genes of high importance for follow-up studies and. EGFR also 
showed high heterogeneity for risk of all glioma and GBM subtype, indicating gene expression in certain tissues 
may affect risk differently—for EGFR these were the hippocampus, hypothalamus and substantia nigra. How-
ever, our analyses showed little evidence of tissue-specific gene expression, with one gene showing suggestive 
evidence of tissue specificity (PICK1, tau-score = 0.78). Larger sample sizes will allow us to clarify exactly how 
gene expression across multiple tissues differentially affects glioma risk. Broadly we have shown in our analyses 
that gene expression across the entire brain, agnostic of tissue site, drives glioma risk as opposed to gene expres-
sion specific to certain tissues, though the same gene expressed in different tissues may differentially affect risk.

We also investigated whether blood eQTLs, for which there are datasets of large sample sizes available, 
can proxy for relatively low powered brain tissue eQTLs. We compared how the MR effect estimates differed 
between eQTLs that were systematically linked between datasets. We found that even after applying an increas-
ingly stringent P value threshold, there is little correlation between the MR associations for brain and blood in 
the context of glioma risk (Fig. 4). We interpreted these results to mean that should gene expression in brain be 
associated with glioma risk, the same gene expression in blood cannot be assumed to also affect risk similarly; 
in some cases, the risk profile of genes expressed in brain and blood differed in direction of effect, e.g. STMN3 
seems to increase risk when expressed in blood and decrease risk when expressed in brain. A potential avenue 
of future research is to determine why some genes, like STMN3, differentially affect risk depending if they are 
expressed in brain or blood.

Strengths of our analysis include the use of genetic variants that proxy for gene expression levels, which 
should reduce the influence of confounding and bias through reverse causation. Furthermore, these genetic 
variants were obtained from relatively large meta-analyses allowing for increased statistical power and more 
precise estimates. The addition of subtype diagnoses and tissue-specific data has allowed us to deeper investigate 
the risk profile of glioma.

Our methodology is also a strength of our analysis. MR is less liable to sources of confounding and bias, and 
provides evidence of causal relationships between genetic expression and glioma risk. Combining the MR results 
with colocalisation provides supporting evidence of causality by determining whether gene expression and glioma 
risk share a single, causal variant—a necessary condition for causality—or through distinct causal variants that 
are in LD with one another—a source of confounding which MR cannot distinguish. The method of colocalisa-
tion we used in this analysis has an inherent limitation whereby it assumes there is only a single causal variant 
within the genomic region being tested16; however, we addressed this by inclusion of a conditional analysis before 
the colocalisation analysis which will condition upon the marginal associations (i.e. secondary/tertiary/etc.) in 
the region of the lead SNP(s) and allow for the single causal variant assumption to hold. Follow-up analyses in 
different tissues also act as a replication study providing further evidence of causality. However, despite evidence 
of causality, this study does not prove causality and further studies would be required to determine this.
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Our study is not without limitations. Despite the use of relatively large datasets for the traits we studied, i.e. 
gene expression and glioma, our analyses still likely suffer from low statistical power arising from small sizes 
particularly evidenced in the non-GBM subtype analyses. All but one of our main results were instrumented 
by a single SNP which limited our ability to undertake common MR sensitivity analyses to detect, for example, 
horizontal pleiotropy, a common source of confounding in MR studies. Colocalisation has been proffered as a 
sensitivity analysis that can at least eliminate spurious associations that have arisen due to horizontal pleiotropy 
because a shared causal variant for two traits is necessary, though not sufficient, for them to be causally related26. 
Despite this, horizontal pleiotropy remains a concern for QTL studies like ours due to instruments generally 
consisting of single SNPs. Another limitation of our study is that MR will provide effect estimates for lifetime 
exposure to gene expression whereas expression levels of genes can frequently change and even within glioma, 
cells at the leading edge of the tumour appear to exhibit a different expression profile to those at the core27. 
Overall, whilst our results are consistent across the sensitivity analyses we performed, there remains a possibility 
that they were biased through confounding and horizontal pleiotropy.

We demonstrated the effectiveness of MR and colocalisation to identify putatively causal genes for glioma 
susceptibility. Our study has revealed causal evidence for three novel genes (RETREG2, FAM178B and MVB12B) 
associated with glioma risk. We have shown that there is no distinct difference between the causal gene expres-
sion profile and glioma subtype risk. Our brain and blood tissue analyses suggested that the causal estimates for 
glioma are different based on whether the gene is expressed in brain or blood tissue. Finally, our tissue-specific 
analyses highlight five candidate tissues (cerebellum, cortex, and the putamen, caudate and nucleus accumbens 
basal ganglia) and four genes (JAK1, STMN3, PICK1 and EGFR) which had causal evidence for affecting glioma 
risk in further research.

Methods
Data.  We used summary-level data from different GWAS to compare eQTLs from brain tissue (estimated 
effective n = 1194)28 and from whole blood (n = 31,684)29. Our analysis involved a two-sample MR framework, 
whereby the exposure and outcome data comprise independent populations, to estimate the causal effect of gene 
expression variation on glioma risk (based on subtype diagnoses of all glioma, GBM and non-GBM). In follow-
up sensitivity analyses, we used eQTLs from Genotype-Tissue Expression version 8 (GTEx v8, https​://gtexp​ortal​
.org/home/25) (n = 114 to 209)30 to examine tissue-specific effects of gene expression. Table 2 summarises the 
datasets used in this analysis. The glioma data were based on a meta-analysis of three glioma GWAS consisting 
of 7400 glioma cases and 8257 controls (Glioma International Case–Control Study (GICC), MD Anderson Study 
(MDA) and GliomaScan datasets4). These include 3,112 GBM cases and 2,411 non-GBM cases—the remaining 
1,877 glioma cases did not have subtype diagnosis available.

This MR study uses only previously published summary-level data. Ethical approval, and informed con-
sent from each participant, for each study may be found in the articles where these datasets are originally 
described4,28–30. All procedures performed in studies involving human participants were in accordance with the 
ethical standards of the institutional or national research committee and with the 1964 Helsinki declaration.

Instrument selection.  Our instrument selection and analytical pipeline is described in Fig.  1. eQTLs 
were categorised based on whether they were cis-acting or trans-acting, defined as SNPs inside and outside a 
1Mbp window of the gene regulatory region, respectively. We included only cis-acting eQTLs in our analysis 

Table 2.   List of datasets used in this study. The meta-analysis is taken from Qi et al.28 which includes data 
from GTEx v630, the Religious Order Study and Memory and Ageing Project (ROSMAP)35 and CommonMind 
Consortium (CMC)36. eQTLGen Consortium (eQTLGen)29 contains eQTLs from whole blood. GTEx v8 data 
is used to interrogate tissue-specific expression30.

Dataset Tissue No. of genes Sample size

Meta-analysis Brain 8277 1194

eQTLGen Whole blood 19,942 31,684

GTEx v8

Amygdala 3726 129

Anterior cingulate cortex (BA24) 5640 147

Caudate (basal ganglia) 8362 194

Cerebellar hemisphere 10,027 175

Cerebellum 11,240 209

Cortex 9082 205

Frontal cortex (BA9) 7335 175

Hippocampus 5517 165

Hypothalamus 5499 170

Nucleus accumbens (basal ganglia) 8198 202

Putamen (basal ganglia) 6902 170

Spinal cord (cervical c-1) 4483 126

Substantia nigra 3301 114

https://gtexportal.org/home/
https://gtexportal.org/home/
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as trans-acting eQTLs are more prone to horizontal pleiotropy due to their distal nature on the genome. We 
then constructed instruments from each dataset (Table 2) using independent (r2 < 0.01) SNPs that met genome-
wide significance (P < 5.00 × 10–8). The number of genes available for the MR analysis in the brain-derived eQTL 
meta-analysis was 6849. Therefore, we pre-specified that results must meet a strict Bonferroni-corrected P value 
threshold of 7.30 × 10–6 (0.05/6849) or a suggestive P value threshold of 9.49 × 10–5 (0.05/6849 × 13, multiplied by 
13 for each brain tissue type).

Identifying the causal effects of genetically predicted gene expression on glioma risk.  For the 
main MR analysis, we applied two-sample MR to estimate the causal relationship between eQTLs and glioma 
using the MR-Base R package31. Most (86%) of tests consisted of the Wald ratio MR method as many eQTLs were 
instrumented by a single SNP; eQTLs that were instrumented by multiple SNPs were analysed using the inverse 
variance weighted (IVW) method. We obtained MR results associated with all glioma, GBM and non-GBM risk.

To test for colocalisation between gene expression and glioma, we extracted regions of SNPs within ± 500Kbp 
around the instrumented SNP(s) for each eQTL with an MR result that met at least the suggestive P value 
threshold (P < 9.49 × 10–5). These regions were subjected to a conditional analysis on marginal associations in 
the region of the lead SNP(s) using Conditional and Joint analysis (GCTA-COJO)32 and colocalisation was tested 
using the coloc R package16 on the lead SNP and all neighbouring SNPs (± 500Kbp, the number of SNPs included 
in the colocalisation analysis are given in Supplementary Table S1b). The coloc package provides estimates for 
five hypotheses related to whether a single causal variant is shared between two traits. The final hypothesis, H4, 
indicates the posterior probability of colocalisation for both traits. Throughout we provide the colocalisation 
estimates in regard to the H4 hypothesis. Further details about the coloc R package are given by Giambartolomei 
et al. in their paper describing the method16.

Finally, we also applied the Steiger filtering method to ensure results were not distorted due to the presence 
of reverse causation26. Results from the Steiger filtering analysis are presented as a categorical variable to aid 
comprehension: true if the direction of effect is from exposure to outcome and P < 0.05; false if the direction of 
effect is reversed and P < 0.05; uncertain if P ≥ 0.05.

Our main results consisted of those results which passed at least the suggestive MR P value threshold 
(P < 9.49 × 10–5), had strong evidence of colocalisation (H4 ≥ 80%) and passed the Steiger filtering sensitivity 
analysis. These results are the most reliable and least likely to be biased, e.g., by LD structure or horizontal 
pleiotropy, due to the strong evidence of colocalisation and by passing the Steiger filtering sensitivity analysis.

Examining tissue‑specific effects of gene expression on glioma risk.  We included each MR asso-
ciation which passed the suggestive P value threshold (P < 9.49 × 10–5) in a follow-up sensitivity analysis to exam-
ine tissue-specific effects of gene expression on all glioma, GBM and non-GBM risk. Genes were systematically 
mapped to relative genes across 13 brain tissues from GTEx v8 based on Ensembl IDs (ENSG). We selected 
instruments from independent (r2 < 0.01) SNPs that met a lenient threshold (P < 5.00 × 10–4) to ensure a greater 
chance that there will be an eQTL for each tissue type. This threshold should be viewed as enabling a heuristic 
approach to the tissue-specific analyses by allowing for more genes to be instrumented in different tissues33. 
Only cis-acting eQTLs were included to avoid potentially pleiotropic trans-acting eQTLs. We analysed these 
data using the MR-Base R package and compared the magnitude and direction of the effect estimate across tissue 
types and subtype diagnosis.

To ascertain whether tissue-specific gene expression differentially altered risk of glioma, GBM and non-GBM, 
we conducted heterogeneity analyses using Cochran’s Q test. We also calculated the tau-score, a quantitative 
measure of tissue-specificity derived by Kryuchkova-Mostacci and Robinson-Rechavi34. This method can be 
naively summarised as summing the weighting of a gene’s expression in a single tissue against the maximum 
expression over all tissues. The tau-score will range between 0 and 1, where 0 means the gene is broadly expressed 
and 1 means specific expression; in their paper, Kryuchkova-Mostacci and Robinson-Rechavi define a thresh-
old cut-off for specific expression at 0.8 which we also use34. Finally, we constructed Z-scores for each SNP to 
determine which SNPs in which tissues may be driving heterogeneity in the results.

We hypothesised that due to the presence of the blood–brain barrier, brain-based eQTLs and blood-based 
eQTLs should have little correlation with one another. We systematically linked causal estimates for eQTLs that 
appeared in both brain tissue and blood. We then compare these data to determine whether blood-based eQTLs 
were correlated with brain-based eQTLs and whether easier-to-gather blood data could proxy sufficiently for 
brain data.

Data availability
The glioma data may be accessed under the European Genome-phenome Archive accession number 
EGAD00010001657 (https​://www.ebi.ac.uk/ega/datas​ets/EGAD0​00100​01657​). GliomaScan data can be accessed 
through database of Genotypes and Phenotypes (dbGaP) accession phs000652.v1.p1.
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