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Abstract  

Mendelian randomization (MR) is a robust causal inference technique that utilises molecular 

data to assess the association between an exposure and an outcome of interest. This method can 

therefore enhance the understanding of risk factors and underlying molecular pathways that are 

relevant in the aetiology of a disease. To date, few studies have utilised this approach to evaluate the 

association between risk factors and glioma risk.  

In this thesis, I have applied MR along with other epidemiological techniques (text mining, 

polygenic risk scores and colocalization) to appraise the role of risk factors with observational evidence 

(Chapter 3), DNA methylation (Chapter 4), tissue-specific gene expression (Chapter 5), single-cell gene 

expression and single-cell alternative splicing (Chapter 6), in glioma risk.   

Analyses undertaken in Chapter 3 provided evidence for a role of genetically-proxied 

increased telomere length in the development of glioma. Chapter 4 presented evidence of novel 

associations between DNA methylation variation at three cytosine-guanine dinucleotides (CpG) sites 

with glioma risk. However, inferences were limited by potential tissue-specific effects as the genetic 

proxies for DNA methylation were derived from blood tissue. In Chapter 5, evidence was provided to 

support the causal role of differential expression of seven genes in blood tissue in the aetiology of 

glioma. In addition, novel differential expression of two genes in brain tissue was associated with 

glioma risk. These findings highlighted that gene expression-glioma associations differed depending 

on the tissue examined. Finally, in Chapter 6 a novel association between oligodendrocyte-specific 

CEP70 expression with glioma risk was identified using brain cell type-specific gene expression data. 

There was little evidence for the role of single-cell alternative splicing in glioma risk. These findings 

indicate that a deeper understanding of regulatory pathways underpinning glioma risk can be gained 

by refining the cellular context in which omic data are derived.  
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Appendix  

Given the size of the Appendix I have uploaded it to GitHub. The Appendix can be found on GitHub 

using the following link: https://github.com/MRCIEU/Appendix_thesis_AH.git  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://github.com/MRCIEU/Appendix_thesis_AH.git


 

20 
 

1 Introduction 
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1.1 Chapter Overview  

This chapter describes the epidemiological burden of glioma and the clinical need to identify 

causal risk factors and establish underlying mechanisms. A summary of exposures linked to glioma risk 

in observational studies, and the genetic and the epigenetic understanding of glioma, is provided. The 

concept of Mendelian randomization (MR) as a form of instrumental variable analysis, which can be 

used to provide supporting evidence for causal relationships between exposures (e.g., putative 

observational risk factors, DNA methylation, gene expression) and outcomes (e.g., disease onset), is 

introduced.  

1.2 A brief overview of glioma  

1.2.1 Epidemiology of glioma and clinical need for research 

Brain tumours such as glioma account for the greatest number of years lost to cancer [1]. 

Malignant gliomas make up approximately 80% of all malignant brain tumours, with glioblastoma 

being the most prevalent histological subtype (~45% of all gliomas) [2, 3]. While age-adjusted 

incidence rates are low (~6 per 100,000 [4]), the prognosis for this condition is poor, with a median 

survival of 15 months for glioblastoma [5, 6] which has remained relatively stable over several decades 

[7]. Intratumoral heterogeneity and redundant signalling mechanisms result in treatment failure and 

the inability to attain tumour remission [8, 9]. Despite intensive research into the aetiology of glioma, 

ionising radiation remains the only accepted modifiable risk factor for this condition [10-12]. 

Additionally, a small proportion of glioma cases can be attributed to non-modifiable risk factors such 

as a family history [13, 14] and certain genetic conditions syndromes (Li-Fraumeni syndrome, Turcot 

syndrome and neurofibromatosis type 1 [15]). 

Currently, therapeutic treatment is multimodal with surgery, radiation, and chemotherapy [16]. 

However, the vast majority of gliomas are surgically incurable due the neoplastic cells being widely 

infiltrative and heterogenous in nature [17]. An additional challenge is the neuroprotective role of the 

blood–brain barrier which hinders the delivery of many potentially important diagnostic and 
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therapeutic agents to the brain [18]. Therefore, there is an urgent clinical need to determine new 

causal risk factors for glioma and to improve the understanding of the underlying molecular pathways 

to develop potential novel preventative and therapeutic strategies.  

1.2.2 WHO classification  

Since the 1990s diagnosis of brain tumours has been through histopathological examinations 

based upon certain microscopic characteristics [19]. The tumour is then assigned a histological 

classification, depicting the malignancy of the tumour, with grade I being the least malignant and 

grade IV being the most and typically associated with the least favourable prognosis [20]. It is vital to 

correctly characterise the tumour grade to establish the optimum therapeutic measures [21]. Yet 

errors in diagnosis are anticipated, especially when a tumour displays two or more histological 

features [22]. Thus, due to advances in our understanding of genetics and epigenetics, diagnosis has 

now moved on to a more molecularly oriented approach  [20, 23, 24]. This is to improve the definition 

of malignant brain tumours and to enable a more reliable and consistent diagnosis for patients. The 

latest fifth edition of the WHO 2021 classification of tumours of the central nervous system [24] has 

simplified the classification of adult glioma into: astrocytoma (isocitrate dehydrogenase [IDH] 

mutant); oligodendroglioma (IDH mutant and 1p/19q codeletion); and glioblastoma (IDH wildtype). 

Due to the evolving classification of the WHO guidelines, in 2016 a glioblastoma tumour with 

oligodendroglia differentiation would now be excluded from a glioblastoma diagnosis. Consequently, 

this impacts the underlying molecular phenotype of the glioblastoma cases in previous glioma 

genome-wide association studies (GWAS). Figure 1-1 provides a simplified adaptation of the latest 

classification of glioma.  
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Figure 1-1 - Classification overview. A summarised adaptation of the classification of adult glioma from fifth edition of the 
WHO 2021 classification of tumours of the central nervous system [24]. 

1.2.3 Cell of origin  

Glioma is a heterogenous disease, comprising of several histological cell types, each with a 

distinct cellular origin. Presently, there are three generally accepted cells of origin for glioblastoma, 

neural stem cells (NSCs), NSC-derived astrocytes and oligodendrocyte precursor cells (OPCs), which 

differentiate into oligodendrocytes [25, 26]. The cell of origin is reported to give rise to distinct 

subtypes [27]. For instance, glioblastoma tumours in mouse models derived from different cells of 

origin displayed unique behaviours [28]. This highlights the importance of improving the 

understanding of how the cellular context contributes to gliomagenesis, which could enable better 

prediction of how a patient will respond to a treatment and to allow the advancement of novel 

therapeutic strategies. However, in glioma development the cells that initially acquire mutations 

might not directly undergo transformation into a cancer cell which adds further complexity to the 

identification of the cell of origin [29].  
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1.3 Dissecting the aetiology of glioma  

The aetiology of cancer is complex and is comprised of different molecular phenotypes across 

various tissues. Throughout this thesis I examine the interaction of glioma onset with putative risk 

factors, the methylome and the transcriptome, to enhance the understanding of the molecular 

mechanisms underpinning glioma development.  

1.4 Risk factors implicated in glioma risk. 

1.4.1 Accepted risk factors for glioma. 

The only environmental factor consistently associated with glioma risk is moderate to high 

exposure to ionizing radiation, accounting for only a small proportion of cases [10-12]. Evidence was 

first provided from the Israeli Tinea Capitus cohort of children who had undergone radiation therapy 

for a benign medical condition [30]. This was supported by data from the Childhood Cancer Survivor 

Study that followed-up 14,361 children and adolescents (aged <21 at initial diagnosis of cancer) who 

had survived for five years [31]. During follow-up, 40 gliomas were diagnosed, compared to an 

anticipated incidence of 4.62 (standardised incidence ratios (SIR) = 8.66, 95% confidence interval (CI) 

6.24 to 11.6). These gliomas arose at a median of 9 years after original diagnosis. In a case-control 

analysis (with 4 controls per case, matched on age at diagnosis, sex and time since diagnosis, and the 

analysis adjusted for original cancer diagnosis) the odds ratio (OR) for glioma amongst children who 

underwent radiation therapy versus those who did not was 6.78 (95% CI 1.54 to 29.7) [31]. The authors 

found that the risk of glioma per Gray of radiation was greatest among children who received radiation 

therapy at less than 5 years of age. Taylor et al. (2010) carried out a study of 17,980 participants who 

had survived at least 5 years after diagnosis of childhood cancer. In this study the risk of glioma 

increased linearly with dose of radiation [32].  

1.4.2 Other postulated risk factors that lack causal evidence. 

There have been several risk factors that have been linked to the occurrence of glioma, though 

results from these investigations may be spurious because of the biases that pervade observational 
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studies. A recently published systematic review presents risk factors for glioma onset that are shown 

to increase, decrease or have a null association with glioma risk [33].  

Observational studies suggest that allergies (asthma, eczema, hay fever) are associated with 

lower glioma risk [34-37] and, consistent with this, asthma-susceptibility genotypes are associated 

with a reduced risk of glioma [38]. Short term use of anti-inflammatory medicine has also been 

reported to reduce glioma risk [39, 40], although other studies have found conflicting results [41, 42]. 

The possible role of allergies in decreasing the risk of glioma, including glioblastoma, may be due to 

an increase in immune surveillance, which in turn may destroy damaged, pro-cancerous cells earlier. 

This hypothesis is supported by reports of a higher occurrence of glioma in HIV and AIDS patients [43-

45] but as this finding was based on the result from a small number of studies with small sample sizes 

the association may be biased by low statistical power.  

Brain tumours are observed to occur more often in Europeans compared with individuals of an 

African or Asian origin [46-49], an observation that has also been reported within children. Roberston 

et al. (2002) investigated ethnic variation in the incidence of adult brain cancer in 994,725 individuals 

over 10.5 years of follow-up. The authors identified 373 people who developed brain cancer (232 

glioblastomas, 106 astrocytoma’s and 35 oligodendrogliomas) of whom 50 were of African ancestry 

and 323 of European ancestry. Age adjusted incidence rates (per 100,000 race specific 

population/year) were 0.11 and 0.46 (p = 0.003) in the African and European populations, respectively. 

The authors report a significant difference in incidence rates for the three most common gliomas and 

suggest that glioma is more common in individuals of European ancestry than in individuals of African 

ancestry [50]. Other studies have reported that glioma occurs 3.5 times more often in individuals of 

European ancestry compared to African ancestry [51]. The explanation for this observed ethnic 

discrepancy remains unclear and while it is possible that a genetic difference exists between the two 

groups [52-54], detection bias cannot be ruled out [55].   
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Certain occupations are reported to be linked with a higher risk of glioma, including physicians 

[56-58], firefighters [56, 57] and farmers [59, 60]. Occupational exposure to metals such as arsenic 

and lead has attracted attention with respect to brain tumours as they are able to penetrate the blood 

brain barrier [61-63]. Exposure to lead has been associated with glioma risk [64, 65] and brain cancer 

mortality [64, 66]. In a cohort study of 1,779,646 men and 1,066,346 women aged 25–64 years at 

baseline and subsequently followed for 19 years, an increased glioma risk was observed amongst men 

exposed to arsenic, mercury, and petroleum products [67]. However, no relationship of lead, cadmium, 

nickel, chromium and iron with glioma risk was reported in a study of 1856 cases and 5189 controls 

[68]. Other studies investigating the relationship between glioma and occupational exposure to metal 

[69] or lead [70, 71], and between brain cancer more generally and lead [72] reported no strong 

evidence of an association.  

There has been speculation that certain lifestyle choices, including alcohol intake, the use of 

drugs, or dietary exposure to nitrous compounds affect the risk of glioma; however, to date the 

evidence is inconclusive [73-78]. 

Radiofrequency radiation/electromagnetic fields associated with mobile phone use have been 

speculated to be associated with brain tumour risk [79]. A meta-analysis of 10 studies found an 

association between long term (≥10 years) mobile phone use (OR 1.33, 95% CI 1.05-1.67) but found 

little evidence of an association with ever use of a mobile phone (OR 1.03, 95% CI 0.92-1.16) [80]. 

However, conflicting findings have also been reported [81]. In a nationwide study involving Danish 

citizens aged 30 years or older (born after 1925), there was no evidence that mobile phone use 

increased brain tumour risk [81].  

Other risk factors that are not discussed here have been investigated in relation to glioma risk, 

including but not limited to: type 1 and type 2 diabetes, body mass index, birth weight, hypertension, 

height, birth weight, menarche (age at onset), menopause (age at onset), coffee/caffeine 

consumption, low-density lipoprotein cholesterol, insulin-like growth factor 1, insulin-like growth 
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factor binding protein, triglycerides, high-density lipoprotein cholesterol, pesticide exposure, 

extremely low frequency magnetic fields, vitamin E, A and C levels [82-97]. 

1.4.3 Problems with observational epidemiological studies to establish causality.  

The search for risk factors for glioma has largely been based on observational cohort, case-

control and cross-sectional studies [98]. Numerous examples exist of seemingly robust observational 

associations between putative risk factors and several disease outcomes. For example, observational 

studies provided evidence that dietary intake of folate lowered the risk of coronary heart disease (CHD) 

and stroke [99]. However, interventions to modify these risk factors, including folate supplementation 

to lower risk of CHD and stroke [100], have not led to the anticipated benefits in randomized 

controlled trials (RCTs) [101]. One of the postulated reasons for this is the susceptibility of 

observational (non-experimental) studies to several biases (specifically, confounding, measurement 

error and reverse causation) that can generate spurious associations and which can be difficult to 

eradicate even through statistical adjustment [101].  

A confounder is a factor that is a common cause of both the disease under consideration and 

the exposure of interest. Importantly, a confounder is not on the causal pathway between the 

exposure and outcome [102]. In 2002 an association had been established between alcohol intake and 

the incidence of 3.6% of all cancers [103, 104] but it is still uncertain whether an association exists 

between any class of glioma and alcohol intake [105, 106]. An observed association between glioma 

incidence and alcohol intake could occur because individuals who consume more alcohol are more 

likely to smoke [107] and to adhere to an unhealthy life-style; [108, 109] thus, it could be these other 

factors that influence the risk of glioma rather than alcohol consumption per se [110].  

Reverse causation occurs when the disease outcome precedes, and leads to, the exposure 

rather than being a consequence of the exposure [111]. For example, a higher level of blood glucose 

has been reported to be protective against glioma [112]; however, an alternative explanation is that 

tumours take-up glucose, leading to low blood glucose levels [113]. 
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Measurement error occurs if the true and measured values differ. There are two types of 

measurement error that can occur. Differential measurement error is an error whose magnitude or 

direction is different for individuals who experience the outcome (i.e., glioma) compared to those who 

do not [114]. Case-control studies are more likely to be subject to differential measurement error 

compared to prospective cohort studies as cases may misreport certain lifestyle factors based on 

knowledge of the outcome. Whereas non-differential measurement error is where the error is 

independent of the outcome [114].  

1.4.4 Randomized control trials to establish causality.  

RCTs are considered the gold standard study design for inferring causality, as successful 

randomization, adequately blinded implementation of the intervention, high rates of follow-up and 

intention-to-treat analysis should yield results that are relatively free from the biases afflicting 

observational studies [115]. On the other hand, RCTs often reflect short-term exposures at one time 

point in life, with limited follow-up, and participants are usually not representative of general 

populations, a particularly important issue if the priority is to identify primary prevention targets 

[116]. Additionally, due to ethical, practical, and financial reasons, it is not feasible to randomize 

people to every risk factor: e.g., exposure to power lines, mobile phone use or breastfeeding. 

1.5 Epigenetics of glioma 

1.5.1 The Methylome  

Cancer occurs due to an accumulation of genetic mutations in conjunction with epigenetic 

changes. Epigenetic alterations are heritable changes to the genome that arise independently to 

changes in the DNA sequence in somatic cells [117]. Epigenetic changes include chemical 

modifications that do not change the sequence of DNA but can alter gene expression [118]. The most 

commonly measured form of epigenetic mark is DNA methylation (DNAm), whereby a methyl group 

(-CH3) is either added or subtracted to a cytosine nucleotide adjacent to a guanine nucleotide within 

the DNA sequence (cytosine-phosphate-guanine [CpG] site) [118]. DNA methyltransferases (DNMTs) 

are the enzymes that catalyse the reversible process of DNAm.  
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DNAm initiates and maintains gene silencing which is vital for many biological mechanisms, 

such as X chromosome inactivation. The mechanism by which gene silencing occurs is by either 

methylation of CpG sites in promoter regions of genes, by blocking the binding of transcription factors 

or via the recruitment of DNA binding proteins that alter chromatic structure [119]. Hence DNAm is 

an important epigenetic alteration that is key to several processes including the regulation of gene 

expression, cell differentiation and in the maintenance of genomic stability. Alterations in DNAm in 

response to changes in external stimuli can result in a shift in disease risk. For example, deregulation 

of gene silencing can lead to the development of cancer [120]. 

One hypothesis in cancer research is that an interaction between the epigenome, gene 

expression levels and environmental factors alters cancer susceptibility. DNAm is susceptible to 

alteration by external factors such as tobacco, ethanol, hormones, stress, and environmental 

chemicals [121]. These external factors may permanently alter the epigenome and gene expression 

levels leading to changes in phenotypes and disease susceptibility [122]. For example, in lung cancer, 

smoking has been linked to alterations in DNAm which are associated with an increase in lung cancer 

risk, suggesting that specific changes in DNAm mediate the effect of tobacco in lung cancer 

development [123]. The discovery of environmental factors and epigenetic alterations that adversely 

influence genetic stability to promote cancer development offers the potential to significantly 

enhance the understanding of glioma onset. 

1.5.2 Examples of DNA methylation in glioma  

Glioma is a heterogenous disease with epigenetic changes defining subtypes of glioma. 

Epigenetic alterations in glioma include: IDH mutations; codeletion of 1p/19q; O6-methylguanine–

DNA methyltransferase (MGMT) promoter methylation; and glioma cytosine-phosphate-guanine (CpG) 

island methylator phenotype (G-CIMP+) [124]. Moreover, the latest fifth edition of the WHO 2021 

classification of tumours of the central nervous system [24] builds upon and incorporates new 

diagnoses involving epigenetic alterations.  
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IDH is an enzyme that is responsible for the catalysis of the decarboxylation of isocitrate (ICT) 

into α-ketoglutarate [125, 126]. Mutations in IDH result in the production of 2-hydroxyglutarate (2-

HG) [125] which leads to the inhibition of DNA demethylases [127-129]. IDH mutations are linked to 

a more favourable disease outcome in glioblastoma and anaplastic astrocytoma, due to an increased 

sensitivity to chemotherapy [130]. Chen at al. (2016) carried out a meta-analysis of 24 studies, 

reporting that patients carrying an IDH1/2 mutation had a significant increase in overall survival (OS) 

(Hazards ratio [HR] = 0.36 95% CI [confidence interval] 0.26–0.49, P < 0.001) and progression free 

survival (PFS) (HR = 0.32 95% CI 0.24-0.46, P < 0.001) [131]. However, IDH mutations are more 

prevalent in secondary glioblastoma indicating that low grade gliomas harbouring IDH mutations 

undergo malignant transformation to glioblastoma [132]. The amplified DNAm observed to be 

associated with IDH mutations is known as G-CIMP [133]. Studies have demonstrated that patients 

harbouring IDH-mutant G-CIMP+ tumours have a more favourable prognosis [130, 133].   

Another example of DNAm within glioma involves a DNA repair gene, MGMT. In glioblastoma, 

methylation of the promoter of MGMT inhibits gene expression, resulting in an inability to repair 

damage caused by alkylating agents used in chemotherapy. Hegi et al. (2005) reported that patients 

diagnosed with glioblastoma who carried a methylated MGMT promoter had an improved overall 

survival when they received temozolomide (TMZ) (median survival was 21.7 months. 95 % CI 17.4 to 

30.4), whereas those who did not carry a methylated MGMT promoter showed no improvement in 

overall survival (median survival was 15.3 months. 95% CI, 13.0 to 20.9) [134].  

Lastly, the deletion and co-deletion of chromosome 1p/19q arises in 50% to 70% of 

oligodendrogliomas (WHO grade II and grade III) [135, 136]. Studies have demonstrated that patients 

harbouring oligodendrogliomas with the co-deletion of 1p/19q have a greater median survival rate, 

compared to patients with oligodendrogliomas with the 1p/19q [135, 137]. Further investigation 

demonstrated that patients harbouring the co-deletion of 1p/19q had a greater survival time when 

they received radiation therapy and procarbazine, lomustine, and vincristine (PCV) compared to 

receiving radiation therapy alone (14.7 v 7.3 years; HR = 0.59; 95% CI, 0.37 to 0.95; P = 0.03). At 
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present, the biological effects of 1p/19q co-deletion are uncertain, although it is speculated to arise 

in the early stages of glioma development [138, 139]. 

DNAm is a powerful tool utilised in glioma classification and to inform on prognosis; however, 

the role of DNAm in the aetiology of glioma remains unclear.  

1.5.3 Epigenetic data to examine causality.  

An ever-growing field within epigenetic epidemiology is epigenome-wide association studies 

(EWAS), which looks to investigate the role of epigenetics in aetiology of disease. EWAS have become 

a valuable method to establish epigenetic variation associated exposures (environmental factors, 

diseases) utilising a mixture of sequencing technology [140, 141]. EWAS have facilitated the discovery 

of epigenetic biomarkers, including in lung cancer [142], glioblastoma [143], and cervical cancer [144]. 

However, EWAS suffer from several biases [145] (such as confounding and reverse causation) which 

hinders their ability to establish causality. For example, confounding can arise if an external factor 

such as diet or a genetic variant, results in an epigenetic alteration and a disease. Furthermore, EWAS 

are often performed using blood tissue rather that the specific tissue of interest. Blood tissue is unable 

to capture tissue-specific epigenetic marks and cell heterogeneity [146].  

One approach to understanding the mechanisms by which risk factors may influence glioma 

onset is to exploit the increasing body of molecular phenotype data, including data allowing 

examination of epigenetic pathways. DNAm is genetically regulated [147] and several studies have 

discovered variation in the germline genome (mainly single nucleotide polymorphisms [SNPs]) 

associated with measurable changes in cytosine methylation levels at CpG sites; these are known as 

methylation quantitative trait loci (mQTL) [148-150]. There are two types of mQTLs that are reported, 

cis-mQTLs and trans-mQTLs. Cis-mQTLs are typically located within a 1Mb window from the CpG site 

whereas, trans-mQTLs are outside of a 1Mb window from the CpG site. It has been shown that cis-

mQTLs frequently colocalize with gene expression quantitative trait loci (eQTLs) [151, 152], suggesting 

that genetic variants causal in disease onset may act through the regulation of DNAm or gene 

expression levels within specific tissue. Hence, the identification of mQTLs causal in disease onset, 
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followed by examination of the role of identified mQTLs in tissue-specific gene expression, offers the 

potential to identify regulatory genetic variants that influence disease onset [153-155].  

1.6 Genetics of glioma  

1.6.1 The Transcriptome  

Gene expression is the process by which the enzyme, ribonucleic acid (RNA) polymerase, 

catalyses the transcription of the DNA sequence into messenger RNA (mRNA), a process which is vital 

to all human systems. Most of the DNA sequence is transcribed into non-coding RNA (ncRNA) that are 

not translated into proteins. There is growing evidence that ncRNA are involved in the regulation of 

gene expression [156].  

The development of cancer is a complex process that results from numerous gene mutations 

that disrupt gene expression which can arise from exposure to an environmental factor. One such 

mutation is a gain of function mutation in proto-oncogenes which results in their conversion to 

oncogenes. Proto-oncogenes usually encode for receptors, growth factors, transcription factors and 

enzymes that catalyse cell proliferation. Conversion to an oncogene leads to the uncontrolled cell 

division observed in cancer. Equally, cancer can be a result of alteration in the expression of tumour 

suppressor genes. These genes inhibit cell growth; however, loss of function or lower levels of 

expression can lead to uncontrolled cell division and eventually to the transformation to cancer. 

Oncogene activation together with loss of function of tumour suppressor genes disrupts the cell cycle, 

permitting uncontrolled cell proliferation [157].  

1.6.2 Examples of some somatic alterations in glioma  

The transcription factor p53 plays an important part in tumour suppression as it is able to 

counter DNA damage by causing cell cycle arrest and apoptosis [158]. Somatic mutations in the 

tumour protein p53 (TP53 gene) occur frequently in grade II and grade III astrocytoma’s as well as in 

secondary glioblastoma [126]. It is the most common mutation within glioblastoma with mutations 

occurring in around 60% of secondary glioblastoma cases and only 25% of primary glioblastoma cases 

[159-161]. Although molecular pathways underpinning glioma development are uncertain, in vivo 
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studies have implicated the ARF-MDM2-p53 pathway in glioma development [162, 163]. Somatic 

mutations of ARF, MDM2, and MDM4 are present in 61%, 10%, and 10% of glioblastomas, respectively. 

Dysregulation of the p53 pathway has been associated with cell invasion in glioblastoma, migration, 

proliferation, and apoptosis evasion [164-166].  

Due to the genetic heterogeneous nature of gliomas, identification of the key oncogenic drivers 

is challenging [167]. Oligodendrogliomas [168, 169] and glioblastomas [170] display a high incidence 

of somatic mutations in the telomerase reverse transcriptase (TERT) promoter, consequentially 

resulting in increased expression of TERT [171, 172]. Telomerase activity has an important role in 

tumorigenesis [173]. The two most frequently occurring mutations in the TERT gene are C228T and 

C250T [171]. These mutations allow for the tumour cells to exhibit unregulated growth properties by 

extension of the telomere length due to TERT activation, highlighting the importance of its function in 

both the anti-senescence and immortal cancer development [174, 175].  

A somatic genetic alteration that occurs within gliomas is in the alpha thalassemia/mental 

retardation syndrome X-linked (ATRX) gene [176]. The role of ATRX is to act as regulator of chromatin 

remodelling and transcription [177, 178]. ATRX mutations occurs in 71% of grade II-III astrocytoma’s, 

68% of oligoastrocytomas and 57% of secondary glioblastomas [179, 180]. It is important to note that 

oligoastrocytomas no longer exist as a disease entry in the WHO 2016 or the WHO 2021 classification 

of glioma. However, the exact function of ATRX in gliomas is still largely unknown [181]. The loss of 

function of ATRX hinders the heterochromatic state of the telomeres resulting in telomere 

destabilisation and enabling the development of alternative lengthening of telomeres [182]. 

Koschmann et al. (2016) reported evidence that implied that a mutated ATRX gene might be a 

potential driver in gliomagenesis as well as acting as a driver for the progression to a secondary 

glioblastoma [183].  

Glioblastomas show a varying degree of amplification of the epidermal growth factor receptor 

(EGFR) gene; observed in 57.8% of primary glioblastomas and 8% of secondary glioblastomas [184, 



 

34 
 

185]. EGFR is a transmembrane receptor tyrosine kinase that is part of the ErbB receptor family; when 

EGFR binds to ligand they form either a homodimer or heterodimer with other ErbB family members 

[186]. Dimerization results in activation of tyrosine kinase activities, leading to autophosphorylation of 

EGFR whilst also allowing for the phosphorylation of other proteins by EGFR leading to activation of 

three signalling pathways [187]. The EGFR somatic mutation that is most prevalent in glioblastoma is 

EGFRvIII, this is a result of an in-frame deletion of 801bp, subsequently producing a shorter yet 

constitutively active form of EGFR [188]. This EGFRvIII mutation is reported to occur in around 30% of 

glioblastomas and solely in cases that display EGFR amplification [189, 190]. Results from both in vitro 

and in vivo investigations have confirmed that EGFRvIII stimulates both increased proliferation and 

invasiveness of glioma cells [191, 192]. EGFRvIII provides tumours with a growth advantage due to 

weaker kinase activity compared to wild-type EGFR [193, 194]. Another possible explanation for this 

increased growth advantage detected in EGFRvIII-transduced cells can be clarified by the fact the 

majority of mouse and human cells express some wild-type EGFR, thus wild-type EGFR can direct 

phosphorylation of EGFRvIII [195]. 

It is probable that glioma subtypes, displaying different somatic mutations, reflect differences 

in their cell of origin. As discussed above, an improved understating of differential gene expression in 

individual cells implicated in glioma development will aid more accurate diagnosis and potentially 

assist in the advancement of preventive and therapeutic strategies.  

1.6.3 Genetic data to examine causality.  

GWAS offer a powerful tool to provide genetic variants associated with a phenotype. GWAS is 

a hypothesis-free method that is widely used throughout genetic research with the aim of identifying 

associations between genetic variants and traits (these include diseases and exposures) [196]. 

Regardless of the significant developments in GWAS in disentangling the genetic architecture of 

diseases, understanding the underlying causal mechanisms continues to be problematic. The causal 

pathways to complex diseases often include several genetic mutations and display a large amount of 

phenotype heterogeneity in morphology, physiology and behaviour [197]. Additionally, there are 
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several steps on the pathway from gene to trait, each which may be affected by genetic variation, thus 

weakening associations between certain genes and traits, and ultimately concealing the causal 

pathway. It is well accepted that association and causation are two different concepts [198]. As it is 

causality that improves our understanding of the underlying mechanisms of complex diseases [199] it 

is important to apply models that can estimate causal effects using genetic data from GWAS.  

GWAS have found that the vast majority of trait associated genetic variants are from non-

coding regions of the genome, thereby indicating that they are likely to play a part in gene regulation 

[200]. This has led to post-GWAS study of variants in the setting of gene expression that has been 

measured in tissues or cells. In turn, this has led to an expansion in the number of studies examining 

genetic variants, namely SNPs, that are associated with expression levels of mRNA and ncRNAs. These 

SNPs are referred to as eQTLs [201]. eQTLs have been identified using a large range of tissues and cell 

types. There are two types of eQTLs that are reported, cis-eQTLs and trans-eQTLs [201]. cis-eQTLs are 

typically located on the same chromosome of the gene and within a 1Mb window from the 

transcription start site. Conversely, trans-eQTLs are outside of a 1Mb window from the transcription 

start site and can be located on a different chromosome to the gene of interest. The utilisation of 

eQTLs permits for an improved understanding of gene regulatory pathways, in addition to detecting 

alterations in gene expression in disease onset [202].    

The majority of eQTL studies have focused on using bulk RNA, which gather RNA from millions 

of lysed cells, sometimes from a variety of tissues. Consequently, the eQTLs represent average gene 

expression across all cells (and tissues) within the sample [203]. Nevertheless, bulk RNA sequencing 

within different tissues [204] and cell lines [205] have still identified tissue specificity in the eQTL 

effects [206]. However, within cancer the transcriptome processes are heterogeneous between 

tumour cells and within the tumour microenvironment [207]. Therefore, when using average gene 

expression from bulk RNA, it is difficult to identify gene expression that specifically drives cancer 

development. The transcriptional variability between cell types means that to identify regulatory 



 

36 
 

mechanisms implicated in disease onset it is necessary to study RNA at a single-cell level within a 

specific tissue. Recent years have seen the development of single-cell RNA-sequencing in 

transcriptome studies. Single-cell sequencing opens opportunities to describe individual cells within 

cellular subpopulations of glioma that elucidate gliomagenesis [208]. It is important to note that 

single-cell RNA-sequencing is a relatively new technique and has some important limitations. For 

example, it is associated with a high dropout, whereby genes that are weakly expressed are not 

detected. Furthermore, most methods are only able to capture protein coding RNA and not non-

coding RNA. Lastly, as cell size and cell cycle state can influence cell diversity and mRNA expression it 

can introduce bias [203, 208].  

1.6.4 Glioma risk loci 

It is possible that a proportion of the susceptibility to glioma can be explained by germline 

genetic variation as there are rare instances of glioma occurring in more than one family member [13, 

14]. This susceptibility is most often described within cases where inherited tumour syndromes are 

present, such as Li-Fraumeni syndrome, Turcot syndrome and neurofibromatosis type 1 [15]. 

Kinnersley et al. (2018) reported a glioma GWAS and summarised identified associations at 27 glioma-

risk SNPs [209] (summarised in Table 1-1). These risk variants contribute to an increase in glioma risk; 

however, additional somatic mutations are a prerequisite for tumorigenesis in individuals with these 

germline variants or familial syndromes [210]. 
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Gene SNP Alleles OR (95% CI) 

TERT rs2736100 T/G 1.27 (1.19–1.37) 

CCDC26 rs4295627 G/T 1.36 (1.29–1.43) 

CCDC26 rs891835 G/T 1.24 (1.17–1.30) 

CDKN2A/B rs4977756 A/G 1.24 (1.19–1.30) 

PHLDB1 rs498872 C/T 1.18 (1.13–1.24) 

RTEL1  rs6010620 G/A 1.28 (1.21–1.35) 

TP53 rs78378222 T/G 2.35 (1.61–3.44) 

CCDC26 rs55705857 A/G 6.30 (4.60–8.80) 

Near TERC rs1920116 G/A 1.30 (1.19–1.42) 

VTI1A rs11196067 A/T 1.19 (1.12–1.27) 

ZBTB16 rs648044 C/T 1.25 (1.17–1.34) 

Intergenic rs12230172 G/A 1.23 (1.16–1.32) 

POLR3B rs3851634 T/C 1.23 (1.15–1.32) 

ETFA rs180159 G/A 1.36 (1.23–1.51) 

JAK1 rs12752552 T/C 1.22 (1.15–1.31) 

MDM4 rs4252707 G/A 1.19 (1.12–1.26) 

AKT3 rs12076373 G/C 1.23 (1.16–1.32) 

Near IDH1 rs7572263 A/G 1.20 (1.13–1.26) 

LRIG1 rs11706832 A/C 1.15 (1.09–1.20) 

OBFC1 rs11598018 C/A 1.14 (1.09–1.20) 

Intergenic rs11233250 C/T 1.24 (1.16–1.33) 

MAML2 rs7107785 T/C 1.16 (1.11–1.21) 

AKAP6 rs10131032 G/A 1.33 (1.22–1.44) 

Near MPG rs2562152 A/T 1.21 (1.13–1.29) 

LMF1 rs3751667 C/T 1.18 (1.12–1.25) 

HEATR3 rs10852606 T/C 1.18 (1.13–1.24) 

SLC16A8 rs2235573 G/A 1.15 (1.10–1.20) 

Near TERC rs3772190 G/A 1.11 (1.06–1.15) 

TERT rs10069690 C/T 1.61 (1.53–1.69) 

EGFR rs75061358 T/G 1.63 (1.50–1.76) 

EGFR rs723527 A/G 1.25 (1.20–1.31) 

CCDC26 rs55705857 G/A 3.39 (3.09–3.71) 

CDKN2A/B rs634537 T/G 1.37 (1.31–1.43) 

VTI1A rs11599775 G/A 1.16 (1.10–1.22) 

ZBTB16 rs648044 A/G 1.19 (1.13–1.25) 

PHLDB1 rs12803321 G/C 1.42 (1.35–1.49) 

Intergenic rs1275600 T/A 1.16 (1.10–1.21) 

RFX4 rs12227783 A/T 1.16 (1.08–1.24) 
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ETFA rs77633900 G/C 1.35 (1.25–1.46) 

TP53 rs78378222 T/G 2.53 (2.19–2.91) 

RTEL1 rs2297440 T/C 1.48 (1.40–1.56) 

Table 1-1 - Summary of the genetic susceptibility loci identified by GWAS in Europeans. Adapted and modified from Table 
1 in Kinnersley et al. (2018) [209]. The table describes the gene, the single nucleotide polymorphism (SNP), the allele and the 
odds ratio (OR) and corresponding 95% confidence interval (95% CI). ORs are reported with respect to the risk allele, 
highlighted in bold. 

1.7 Instrumental variable analysis to examine associations between an exposure and an outcome.  

1.7.1 Mendelian Randomization  

One method to appraise causality within observational epidemiology is the use of Mendelian 

randomization (MR). MR is a type of ‘instrumental variable’ analysis that utilises genetic variants, 

commonly SNPs, that are robustly associated with an exposure as a proxy for the risk factor of interest 

[211]. 

All MR studies make use of germline genetic data (as opposed to somatic data), as these variants 

tend to be randomly distributed with respect to most human traits in the general population. This is 

in line with Mendel’s laws of inheritance (segregation, independent assortment) and the fixed nature 

of germline genotypes [212]. Thus, germline genetic variants are less likely to be affected by the sorts 

of confounding factors that typically bias observational findings [213]. Additionally, as germline 

genotype cannot be affected by the presence of disease, the generation of spurious results through 

reverse causation is avoided [214]. Germline genetic variants can thus be regarded as randomized 

proxies for an exposure of interest, in the same way that the allocation group in an RCT is a proxy for 

an intervention of interest (Figure 1-2). MR can exploit SNPs that are associated with modifiable risk 

factors to strengthen causal inference about the nature of relationships between risk factors and 

disease [214].   
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Figure 1-2 - Comparison of Mendelian randomization with randomized control trial. This demonstrates the analogy between 
a randomized control trial and a Mendelian randomization study. 

The application of MR involves three assumptions (Figure 1-3): (1) the genetic variants 

(‘instruments’) are reliably associated with the risk factor of interest; (2) the genetic variants are 

independent of confounding factors [215, 216]; and (3) the genetic variants are only associated with 

the disease outcome through the risk factor of interest [211, 217]. Within the constraints of these 

assumptions, genetic instruments (SNPs) can be used as proxies for a large range of cancer-related 

modifiable exposures. One-sample MR is the standard application of MR. There is one data set that 

contains all the data on the SNPs, exposure, and outcome for all participants [218]. Due to the rare 

nature of glioma, one-sample MR is likely to be statistically underpowered. As a result, MR techniques 

have been developed to allow analysis when genetic association studies are conducted in two 

separate samples sets: one set for the exposure of interest and one for the outcome [219]. This 

method is referred to as two-sample MR [220].   
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Figure 1-3 - MR assumptions. The diagram illustrates the three assumptions of the MR methodology. The dashed line 
indicates that there is no association between the SNP and the disease. 

1.8 Mendelian randomization in glioma research  

1.8.1 Application of Mendelian randomization  

Like most diseases, glioma GWAS to date have examined genetic variation in relation to the 

causes of disease risk, using case-control study designs, as opposed to disease progression [221]. The 

primary application of MR in glioma research has, therefore, focused primarily on causal effects of 

environmental exposures on disease risk [222-225] as opposed to survival. There are some instances 

where factors are involved in both disease incidence and progression, such as low-density lipoprotein 

cholesterol levels for heart disease risk and recurrence [226], although such instances may be 

exceptional. Cases do exist where a risk factor for a disease is not implicated in progression, as has 

been proposed for the relationship between folate consumption and colon cancer [227]. Thus, current 

case-control GWAS of glioma risk have the potential to inform on the underlying causal mechanisms 

of disease onset but (at the current time) may be less informative for discovering drug targets to 

improve glioma survival [228]. The latter requires case only GWAS that examine genetic variation in 

relation to disease progression, but such studies are currently rare [221]. The most probable 

explanation for this is due to a research focus on determining mechanisms that cause disease 



 

41 
 

incidence and because of the challenges inherent in collecting progression data. At present, a few MR 

studies have been conducted that investigate progression of disease [229] but none in glioma 

progression, which is required for the discovery of targets for improving glioma survival [228]. 

MR can be used to identify and investigate potential drug targets [230, 231]. A quarter of the 

drugs that enter clinical development fail due to their ineffectiveness [232, 233]. Current drug targets 

are authenticated using in-vitro and animal models, but these can fail to predict the potential benefits 

(or harm) in humans [230, 231]. Nelson et al. (2015) aimed to establish whether current genetic 

evidence could predict drug mechanisms. The authors reported that opting for targets that are 

genetically supported may result in twice the success rate in clinical development [234]. MR could 

substantially augment these methods [230, 231]. The theory is that specific genetic variants can be 

utilised to imitate the effects of targeting a protein pharmacologically. If the variant codes for a 

potential drug target that causes an alteration in activity of the encoded protein, the causal effect of 

the drug on disease can be assessed by MR [235, 236]. Additionally, MR can be used to examine all 

pairwise associations between serum protein levels and disease risk [237]. If a variant is identified that 

is robustly associated with levels of a serum protein that display a putative causal relationship with 

disease risk, methods can be employed to search for available drugs that cause an alteration in the 

levels of that protein [238]. As discussed, only case-control GWAS exist at present for glioma which 

may be less informative for the discovery of drug targets to improve survival [228]. Table 1-2 provides 

a summary of some of the different methods used to obtain MR estimates [239]. 
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Statistical Method.  Description.  

Inverse-variance weighted (IVW)  Assumes causal estimate due to each SNP is the same (fixed 
effects IVW) or that if their effects differ that their deviations 
are balanced (random effects IVW)[239]. Gives an unbiased 
estimate when there is no horizontal pleiotropy (fixed 
effects IVW) or when horizontal pleiotropy is balanced 
(random effects IVW). 

Maximum likelihood estimation (MLE) Assumes effect of the exposure on the outcome due to each 
SNP is equal (fixed effects IVW makes the same assumption). 
A benefit of this method is that it might give more reliable 
results when measurement error in the SNP-exposure effect 
is present [239]. Gives an unbiased estimate when there is 
no horizontal pleiotropy or when horizontal pleiotropy is 
balanced (but variance of the estimate will be 
underestimated in the latter scenario). 

Weighted median estimate (WME) Takes the median effect of all SNPs. Returns an unbiased 
estimate if half the SNPs are valid instruments [239]. 
Requires a large number of instrumental SNPs otherwise 
method is underpowered. 

Mode-based estimate (MBE)  SNPs are clustered into groups determined by similarity of 
causal effects. Returns the causal effect estimate based on 
the cluster that has the greatest number of SNPs [239]. Gives 
an unbiased estimate if the SNPs in the largest cluster are 
valid, even if most SNPs are invalid instruments. Requires a 
large number of instrumental SNPs otherwise method is 
underpowered. 

MR-Egger Modifies the IVW analysis by permitting a non-zero 
intercept, permitting the net-horizontal pleiotropic effect for 
all SNPs to be unbalanced, or directional [239]. Gives an 
unbiased estimate even if all SNPs do not adhere to 
instrumental variable assumptions but requires the InSIDE 
(instrument strength independent of direct effects) 
assumption to be valid. Requires a large number of 
instrumental SNPs otherwise method is underpowered. 

Wald ratio This is the easiest method to estimate a causal effect. Wald 
ratio method is appropriate when only a single SNP is 
available to proxy the risk factor of interest. However, a 
limitation is that it is much harder to appraise MR 
assumptions with only a single SNP [240]. 

Colocalization  Assesses whether two traits (i.e., exposure and outcome) are 
driven by the same causal variant or by two distinctive causal 
variants [241]. Can be used as a sensitivity analysis to test 
whether the IV2 assumption has been violated by linkage 
disequilibrium.  

Steiger filtering  Variants that proxy the exposure of interest are removed if 
they explain more of the variance in the outcome compared 
to the exposure [242].  

Table 1-2 - Description of statistical methods used in MR analysis. The statistical methods described are the inverse 
variance weighted (IVW), maximum likelihood estimation (MLE), weighted median estimate (WME), mode-based estimate 
(MBE), MR-Egger, colocalization and Steiger filtering. 
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1.8.2 Limitations of Mendelian randomization pertinent to glioma  

MR has widely recognised limitations [243]. For some exposures there is a lack of genetic 

variants (SNPs) available for instrumentation [244]. For example, ionizing radiation emitted by mobile 

phones has been suggested as a risk factor for glioma [245]. However, currently no genetic variants 

have been associated with exposure (or response) to ionizing radiation and therefore MR analysis 

cannot be performed for this putative risk factor.   

A key limitation of MR is pleiotropy [246]. Pleiotropy occurs when a genetic variant has more 

than one effect. If one or more of these effects influence the outcome through pathways other than 

the exposure of interest (so called horizontal pleiotropy) a core MR assumption is violated i.e., that 

variants only exert their effect on the outcome via their influence on the exposure of interest [247-

250]. Techniques have been developed, such as MR-Egger regression, that can quantify the amount 

of bias caused by horizontal pleiotropy, as well as providing a valid causal estimate despite the 

presence of horizontal pleiotropy [251]. Another type of pleiotropy that exists is vertical pleiotropy. 

This is where the genetic variants have associations with biomarkers that are downstream of the 

biomarker of interest [252]. Thus, they are on the causal pathway and should be considered as 

intermediates of the relationship between an exposure and an outcome, not as confounding factors. 

MR studies typically require large sample sizes, an issue that can be compounded by the rare 

nature of glioma. One way to increase power is to develop genetic risk scores that contain multiple 

alleles to explain more of the variance in the exposure of interest. This runs the risk of including invalid 

variants, such as those that do not exert their effect on the outcome via the exposure of interest [247-

249], although such potential violations of the MR assumption can be formally tested using MR-Egger 

regression. Power can also be increased by using a two-sample approach, where large case-control 

GWAS can be used even if they have not measured the exposure of interest. Limitations of MR have 

been discussed in detail in several published papers [211, 215, 244, 246, 253-255]. 
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1.8.3 Studies that have evaluated risk factors for glioma using Mendelian randomization at the time 
of beginning this thesis. 

Two-sample MR is a method that can harness information from GWAS summary statistics and 

has been applied to the context of glioma to look at several risk factors. I discuss key studies that have 

used two-sample MR to investigate associations between previously reported risk factors and glioma.  

An MR study to evaluate the causal relevance of telomere length on the risk of cancer and non-

neoplastic diseases found that genetically-predicted longer telomeres increased the risk of glioma, 

while being protective for certain non-neoplastic diseases, such as cardiovascular diseases [231]. The 

analysis employed summary genetic data for 35 cancers and 45 non-neoplastic diseases, including 

1,130 glioma cases and 6,294 controls. The strongest association was for glioma (OR per SD increase 

in genetically predicted telomere length was 5.27; 95% CI: 3.15 to 8.81) [231]. A possible explanation 

for this observation is that telomere shortening may act as a tumour suppressor, restricting the 

proliferative potential of cells. Therefore, those with longer telomeres have a greater probability of 

obtaining somatic mutations due to an increased proliferative potential [256]. 

Walsh et al. (2015) also used an MR approach to establish whether a genotypically estimated 

longer or shorter telomere length was linked with an increased risk of glioma and whether inheritance 

of SNPs associated with telomere length are indicators of glioma risk. The authors assessed differences 

in genotypically-estimated relative telomere length in a total of 1,130 glioma patients and 6,294 

controls. The average approximated telomere length was 31bp (5.7%) longer in glioma cases 

compared with controls in discovery analyses (P = 7.82×10-8). This finding was supported in the 

replication analysis as the mean telomere length was 27bp (5.0%) longer in glioma cases than controls 

(P = 1.48×10-3). The authors reported that the risk of glioma increases monotonically with each 

increasing septile of telomere length (OR 1.12; 95% CI: 0.90 to 1.62). Additionally, the authors 

reported that four telomere length-associated SNPs were significantly related with glioma risk in 

pooled analyses, including those in the telomerase component genes TERC (OR 1.14; 95% CI=1.03-

1.28) and TERT (OR 1.39; 95% CI=1.27-1.52), and those in the CST complex genes OBFC1 (OR 1.18; 95% 
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CI=1.05-1.33) and CTC1 (OR 1.14; 95% CI=1.02-1.28). The indication of risk alleles for glioma close to 

TERC and TERT that are also related with telomere length suggests that telomerase is important in 

glioma formation [257]. 

Takahashi et al (2018) used two-sample MR to investigate whether a causal relationship exists 

between circulating vitamin D (25-hydroxyvitamin-D) and glioma risk, involving 12,488 glioma cases 

and 18,190 controls. The authors reported no strong evidence of a causal relationship between 

vitamin D and glioma when either the inverse-variance weighted (IVW) method (OR per SD increase 

1.21, 95% CI: 0.90 to 1.62, P = 0.201) or the maximum likelihood estimation (MLE) method (OR per 

SD increase 1.20, 95% CI:  0.98 to 1.48, P = 0.083) was used [223].  

Disney-Hogg et al. (2018) used an MR approach to evaluate the observed inverse relationship 

between allergies and glioma risk. The instrumental variables were SNPs robustly associated with 

atopic dermatitis, asthma and hay fever, IgE levels, and self-reported allergy. The study involved 

12,488 cases and 18,190 controls. The authors found little to suggest an association between glioma 

and asthma, hay fever, IgE levels, or self-reported allergy. For atopic dermatitis an inverse association 

was found (OR per 2.7-fold increase in odds of atopic dermatitis) by the IVW (OR 0.96, 95% CI 0.93 to 

1.00, P = 0.041) and MLE methods (OR 0.96, 95% CI 0.94 to 0.99, P = 0.003), but not for weighted 

median estimate (WME) and mode-based estimate (MBE) methods [258], suggesting that having 

atopic dermatitis reduces the risk of glioma.  

Disney-Hogg et al. (2018) conducted an MR analysis to interrogate the observed association 

between obesity-related factors and risk of glioma. The authors identified variants that were robustly 

associated with 10 key obesity-related factors: Two-hour post-challenge glucose, BMI, fasting glucose, 

fasting insulin, HDL cholesterol, LDL cholesterol, type-2 diabetes, total cholesterol, triglycerides, and 

waist-hip ratio. This study encompassed 12,488 cases and 18,190 controls. This study found little 

evidence that indicated that obesity-related factors contribute to glioma [259].  
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1.8.4 Potential application of different Mendelian randomization study designs in glioma research  

There are several different design strategies for MR that have been discussed in detail by Zheng 

et al. (2017) [260]. The potential application of these different MR study designs in glioma research 

are outlined below.  

Improved knowledge of signalling pathways that are causally associated with glioma incidence 

can be helpful to design preventative strategies and effective therapeutic targets [261]. A useful MR 

strategy to establish whether a molecular intermediate plays a role in the causal pathway between a 

risk factor and disease is the use of two-step MR [262]. An improved understanding of the molecular 

changes that drive glioma formation will allow for opportunities to modify disease causing factors.  

Bidirectional MR involves using instruments for both the exposure and the outcome to assess 

the direction of causality: i.e., does the exposure cause the outcome or does the outcome cause the 

exposure [263]. For instance, observational studies have suggested that there is an inverse association 

between allergies and glioma risk, but the direction and causality of the association remains uncertain: 

it is not clear whether allergies decrease the risk of glioma or whether the inverse association arises 

because of suppression of the immune system by glioma itself [264]. 

There are cases in which genetic variants are related to numerous correlated phenotypes 

[265], for example, genetic variants that associate with lipoprotein metabolism tend not to correlate 

with just one specific lipid fraction [266]. As a result, assessing the association of one specific 

intermediate phenotype with disease can be challenging [101]. Multi-phenotype MR can be used in 

these cases [267-270]. Multivariable MR can be applied to glioma research when testing the effect of 

lipids on glioma to identify the independent effect of each lipid subtypes on glioma. 

Hypothesis-driven MR has huge potential in glioma research. Hypothesis-driven MR can 

validate the relationship between a risk factor and glioma for which an association has previously been 

reported. In addition, hypothesis-free MR has the potential to identify novel associations. Hypothesis-

free MR can be used to examine causality in complex frameworks in glioma, as a well as a method 

to data mine high-dimensional studies [271]. Haycock et al. (2017) implemented a mixture of 
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hypothesis-driven and hypothesis-free MR to investigate the relationship between telomere length 

and 22 cancers and 32 primary non-neoplastic diseases. Similarly, hypothesis-driven MR can validate 

the relationship between a putative risk factor and glioma for which an association has previously 

been reported. For example, a recent meta-analysis involving 2,706 glioma cases reported an inverse 

relationship between alcohol consumption and glioma risk (RR = 0.87; 95 % CI (0.78, 0.97); P = 0.014) 

[272]. 

Hypothesis-free MR can be applied to “omics” data. As glioma is a heterogenous disease it is 

important to consider both the tissue and the cell type when examining DNAm and gene expression 

that influence glioma development. Recent advancements in technology have allowed the 

identification of cis-mQTLs associated with DNAm as well as cis-eQTLs associated with gene expression 

within specific tissues and cell types. MR can be utilised to uncover the molecular pathways by which 

DNAm risk [273] and differential gene expression [274] influence glioma risk.  

MR-Base is a tool that improves the accessibility of GWAS summary data for MR research 

[275]. MR-Base can assist hypothesis-free testing as it allows researchers to examine all pairwise 

associations to data mine for causal relationships of interest [276]. Where novel associations are 

identified, these associations can then be subjected to formal and extensive hypothesis-testing studies 

[236]. 

Factorial MR can be used to develop therapeutic strategies to improve glioma survival. Factorial 

RCT is where a participant is either assigned to a group that obtains neither intervention, one of the 

interventions, or both [277]. In a factorial trial the separate effects of each intervention can be 

considered, as well as the benefits of obtaining both interventions together [277]. Similarly, factorial 

MR can be performed by using combinations of genetic variants to attain unconfounded estimates of 

the effect of co-occurrence of the two drug targets on disease [267]. In glioma research if we have 

two drug targets and we want to know the combined effects of these two drugs on glioma, then we 

can apply factorial MR. Factorial MR can assess the antitumor efficacy of drug targets on glioma by 

investigating the combination of different targeted drugs [278].  
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1.8.5 Gaps in the use of Mendelian randomization in glioma research  

For GWAS and MR of glioma progression to be successful for the development of drug targets 

to improve glioma survival, large scale case-only studies will be required with both progression and 

germline genetic data. RCTs offer a potential reservoir of data for such studies; however, due to the 

rare nature of glioma, sample size is limited [279-281]. A limitation of progression studies is the 

introduction of collider bias, discussed in detail in Paternoster et al. (2017) [228]. Collider bias is 

problematic in MR of disease progression as a risk factor of interest that causes the disease may be 

correlated with other risk factors involved in incidence, and any association between the index risk 

factor and progression can be confounded by these correlated risk factors. If the problems of sample 

size and collider bias can be adequately overcome, GWAS and MR of disease progression offer a 

promising opportunity to identify new treatments for glioma that could enhance survival [282]. 

Additionally, an improved understanding of the molecular changes that drive glioma progression will 

allow for opportunities to develop targeted molecular therapies. At present, although there are some 

examples where targeted therapy responses have been recorded in glioma patients, no targeted 

therapy has been approved as an effective treatment in clinical trials [283].  

Given the lack of large-scale case-only studies with data on progression and germline genetic 

data, a priority of research in the near term should be to identify causes of glioma onset. Using MR, 

putative observational associations can be examined to establish their influence on glioma risk. The 

findings from such studies will be informative for the design of primary and secondary prevention 

strategies. The latter could be particularly valuable for glioma prevention in high-risk populations, such 

as childhood cancer survivors (who received radiation therapy), people with genetic syndromes 

known to increase risk of glioma and people exposed to known causal factors because of their 

occupations. For example, if a specific dietary factor is found to be causally associated with a decrease 

in glioma risk, high risk populations could be advised to increase their consumption of that specific 

dietary factor.  
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Future research will involve hypothesis-free MR, which will make use of omics data, to examine 

the association between DNAm and gene expression with glioma risk. The identification of DNAm at 

CpG sites and gene expression associated with glioma risk could offer insights into the molecular 

pathways underpinning glioma development and lead to the prioritisation of biological pathways that 

may inform prevention or treatment. Furthermore, as genetic variants associated with DNAm seem 

to overlap with eQTLs at many loci throughout the genome [284, 285], both DNAm and gene 

expression may exist on the causal pathway between genetic variation and disease. Using an MR 

approach, the causal chain between DNAm, gene expression and glioma onset/progression can be 

investigated [262]. The identification of aetiologically relevant mediators might potentially allow the 

development of novel therapeutic approaches, if the CpG sites could be therapeutically targeted 

either directly to modulate DNAm levels or via other mechanisms impacting the regulation of the gene 

or pathway in question.  

As glioma displays substantial genetic heterogeneity, it is important to refine the cellular 

context by exploring how differential single-cell gene expression associates with glioma risk. This could 

improve understanding of the molecular and cellular pathways by which gene expression contributes 

to glioma risk. In addition to single-cell gene expression, alternative splicing (AS) increases the diversity 

of transcripts and is thought to be involved in the progression of glioblastoma, with new splicing 

isoforms resulting in several malignant phenotypes [286, 287]. Thus, assessing the causal role of 

single-cell gene expression and alternative splicing (AS) with glioma risk could shed light on the 

regulatory pathways underpinning glioma.    

1.9 Conclusions and objectives of thesis  

So far in glioma research, despite many observational studies examining glioma aetiology, only 

exposure to ionising radiation is causally linked to glioma incidence. Observational studies are prone 

to bias from confounding and reverse causation which has made it difficult to establish true causal risk 

factors for glioma. Furthermore, translation of epigenetic and genetic alterations into a greater 
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understanding of molecular mechanisms have been limited. Few epigenetic studies examining glioma 

risk exist and those that do are limited by very modest sample sizes or have been undertaken using 

glioma tumour tissue which are potentially biased through confounding by treatment thus restricting 

any inferences that can be made with respect to disease aetiology. Likewise, despite recent GWAS 

successfully identifying 27 genetic loci for glioma risk; most genetic associations are from variation in 

non-coding genetic regions and challenges remain in determining causality between genetic variants 

and traits. Consequently, there is a strong clinical need for glioma research to focus on establishing 

triggers of disease onset and to establish underlying causal mechanisms.  

Therefore, the aims of this thesis are:  

1. To systematically identify putative risk factors that have been associated with glioma risk, using 

a wealth of genetic data in combination with two-sample MR and polygenic risk scores to 

appraise evidence of an association between putative risk factors and glioma.  

2. Utilise epigenetic data to assess whether genetically proxied blood tissue DNA methylation is 

associated with putative glioma risk factors and/or with glioma risk. To establish if DNA 

methylation is a potential mediator on the causal pathway between the risk factor and glioma 

onset. Gene expression data in brain and blood tissue will be used in parallel to provide 

supporting evidence for the putative CpG sites identified and to assess the likelihood of vertical 

pleiotropy.  

3. Apply a hypothesis-free approach, utilising genetic variants (i.e., cis-eQTLs) identified from bulk 

RNA to proxy gene expression in both brain and blood tissue, to perform transcriptome-wide 

MR and colocalization to identify tissue-specific genes implicated in glioma risk. 

4. To gain further insights into glioma biology by incorporating germline genetic variants strongly 

associated with single-cell gene expression and alternative splicing (i.e., single-cell eQTLs and 

splicing QTLs) in brain specific cells to identify differential gene expression and alternative 

splicing associated with glioma risk. Thus, increasing the understanding of the molecular and 
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cellular pathways which contribute to glioma risk which could potentially be used to advise 

preventative and therapeutic approaches.  

1.10 Organisation of thesis  

 

Figure 1-4 - Thesis objectives. The diagram illustrates the objectives of the thesis and the corresponding results chapters that 
aim to answer each objective. 
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1.11 Thesis outputs  

Table 1-3 summarizes contributions I have made to several scientific meetings during my PhD.  

Title  Activity type Work presented  Date 
completed  

Bristol Brain Research 
Day 

Oral Presentation Chapter 3: Testing for causality between 
systematically identified risk factors and glioma: A 
Mendelian randomization study. 

11/04/2018 

Steering group – 
Brain cancer  

Public engagement and 
Oral Presentation 

Chapter 3: Testing for causality between 
systematically identified risk factors and glioma: A 
Mendelian randomization study. 

02/06/2018 

EANO conference  Oral Presentation  Chapter 3: Testing for causality between 
systematically identified risk factors and glioma: A 
Mendelian randomization study. 

10/10/2018 

Steering group – 
Brain cancer 

Public engagement and 
Oral Presentation 

Chapter 3: Testing for causality between 
systematically identified risk factors and glioma: A 
Mendelian randomization study. 

01/12/2018 

Mendelian 
randomization 
conference  

Poster presentation  Chapter 3: Testing for causality between 
systematically identified risk factors and glioma: A 
Mendelian randomization study. 

17/07/2019 

Clinical epigenetics 
international 
conference 

Poster presentation  Chapter 4: The role of DNA methylation in the 
relationship between glioma risk factors and glioma 
incidence 

09/06/2022 

Table 1-3 - Scientific meetings thesis presented at. Description of the scientific meetings I have presented at, including the 
type of presentation, the work that was presented and the date of the presentation. 
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2 Methods 
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2.1 Chapter overview  

Rapid developments in molecular genetic technologies have permitted both genetic and 

epigenetic data to be more readily generated and are more widely accessible than ever before. As 

mentioned in Chapter 1, utilisation of this data can be used to uncover risk factors with observational 

evidence of an association, epigenetic alterations, differential gene expression and alternative splicing 

associated with glioma risk to augment understanding of glioma incidence. Throughout this chapter I 

detail methods and data sources and describe how they are used to improve understanding of glioma 

development within this thesis. I include the methodology of Mendelian randomization (MR), the core 

approach that is used to derive causal relationships across this thesis. Extensions to the MR methods 

are described in detail, including multivariable MR and two-step MR. Various sensitivity analyses that 

can be used within MR analyses to reduce the likelihood that key assumptions are violated are also 

discussed. An overview of the methodological pipeline is provided in Figure 2-1. 

 

Figure 2-1 – A summary of the methods used in each results chapter in this thesis. MR, Mendelian randomization; GoDMC, 
Genetics of DNA Methylation Consortium; GTEx, The Genotype-Tissue Expression; DNA, Deoxyribonucleic acid; RNA, 
Ribonucleic acid. 

2.2 Text mining to establish risk factors.  

Integral to the growth of scientific research is the collation of accumulated knowledge, as 

individual studies have small additive effects that create a larger insight into the research 
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phenomenon [288, 289]. By systematically examining existing literature, the researcher can gather, 

evaluate and summarise all accessible evidence to: consolidate results to answer a pre-specified 

question; improve understanding of a research topic by determining what information exists and if 

trends are present in the obtainable data; create novel hypotheses; and pinpoint areas of research 

where data are insufficient [288, 290]. It is essential that the researcher generates efficient search 

strategies that are systematic and exhaustive, while maintaining a high degree of sensitivity [289, 291, 

292].  

To identify risk factors for the development of glioma from the literature, I performed a 

systematic literature search and review. This required three steps: i) design of the search strategy to 

capture all risk factors while still retaining sensitivity; ii) screening of titles and abstracts using pre-

designed inclusion criteria, to capture all risk factors while excluding irrelevant studies, iii) screening 

of full texts of included papers and excluding illegible records based on pre-designed exclusion criteria; 

and iv) extraction of relevant risk factors.  

Once risk factors with observational evidence of an association with glioma risk had been 

identified from the literature, genetic and epigenetic data from association studies could be 

incorporated into an MR framework to appraise causality between an exposure of interest and glioma 

risk. Details on how the MR study was conducted are provided in section 2.5 of this chapter.  

2.3 Causal inference in epidemiology 

A primary objective of epidemiological research is to determine the causal effect of a risk 

factor or treatment on a health outcome to inform the development of interventions that will change 

the frequency of the outcome. Despite causation being an important notion in epidemiology, a variety 

of definitions exist within the literature [293, 294]. A causal effect can be defined as a change in 

outcome when the exposure is placed at two distinct levels [295]. In addition, a causal effect is often 

described using a counterfactual contrast, where the outcomes differ between those who did receive 

the intervention and those who did not [296]. As an individual cannot both receive and not receive an 

intervention simultaneously, one of the outcomes in the causal contrast is unobserved [296]. Directed 
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acyclic graphs (DAGs) are a useful tool to illustrate putative causal relationships between an exposure 

(e.g., smoking) and an outcome (e.g., glioma risk) [297]. Confounders (common causes of an exposure 

and outcome that are not on the causal pathway between these traits) and other variables that could 

bias the association are included in the DAG; therefore, detailed knowledge of the subject matter is 

required. Within observational epidemiology, multivariable regression analysis can be applied, where 

confounders are included in the regression models to estimate the effect of a particular exposure on 

an outcome adjusted for these factors. In practice, robust causal inference from this approach can be 

difficult to achieve due to the presence of unknown confounders, unmeasured confounders, and 

confounders measured with error [298].  

To circumvent the limitations of multivariable regression, I have utilised a method termed 

Mendelian randomization (MR), which is based on the use of instrumental variables (IVs). In my thesis, 

the causal effect estimate is the MR estimate, i.e., the causal effect estimated by using instrumental 

variables to test the association between an exposure and the outcome under investigation.  

2.4 Instrumental variable analysis  

The econometric method IV analysis is an approach to establish a causal effect between a risk 

factor X and an outcome Y by utilising an endogenous predictor Z [299]. IVs can be applied to medical 

research to reduce bias introduced by measured and unmeasured confounding present in 

observational studies [300-302].  

2.4.1 Assumptions 

To achieve a valid test of the causal null hypothesis, a valid instrument must satisfy three 

conditions (Figure 2-2): 

i. The variable Z (instrumental variable) is associated with the risk factor of interest X. 

ii. The variable Z is independent of all variables, including error terms U. 

iii. Z affects Y (outcome) only through X.  
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Figure 2-2 -Instrumental variable assumptions. Directed acyclic graph (DAG) of the variables Z, X, Y and U where the IV Z is 
consistent. The dashed line indicates no association.  

The first assumption ensures that differences in the endogenous predictor used as an IV will 

correspond to different levels of the exposure. When an endogenous predictor is not strongly 

associated with an exposure this is termed a weak instrument. The second assumption can be 

considered as ensuring that the endogenous predictor used to proxy the exposure is not associated 

with any confounders of the instrument-outcome association. The third assumption states that the 

causal pathway is only through the exposure; the endogenous predictor cannot be associated with 

the outcome via another pathway not involving the exposure of interest.  

2.5 Instrumental variable analysis application for causal inference  

2.5.1 Mendelian randomization  

The MR technique is an extension to the IV analyses that utilises germline (as opposed to 

somatic) genetic variants associated with traits to draw causal inferences about the effect of a putative 

causal exposure (e.g., observational risk factor, DNA methylation, gene expression) on the risk of a 

disease. For MR to provide a robust causal estimate, the genetic instruments selected as IVs to proxy 

the exposure of interest must adhere to the same IV conditions mentioned above. The first IV 

assumption is referred to as the relevance assumption. Usually for this assumption to be satisfied, the 

genetic variants must associate with the exposure of interest at genome wide significance (P<5x10-8) 

and be replicated in independent samples representative of the same underlying population. The 

second IV assumption is described as the exchangeability assumption and states that the genetic 

variant used as an IV is not associated with any confounders of the instrument-outcome association. 
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The third IV assumption is known as the exclusion restriction assumption and ensures that the genetic 

variant used as IV only associates with the outcome through the exposure of interest.  

2.5.2 Data sources for Mendelian randomization  

 In my thesis, genetic variants will be used as IVs. MR analyses can be performed utilising either 

individual-level data or summary-level data. Summary-level data are taken from genome-wide 

association studies (GWAS) and report the association between each genetic instrument and the trait 

of interest. All MR analyses performed throughout this thesis make use of genetic variants and their 

association with a particular trait from summary-level data. The precision of the MR association is 

dependent on the accuracy of the GWAS (the size of the standard error). Furthermore, if the summary 

association data has been adjusted for a covariate on the causal pathway between X and Y this can 

induce collider bias. Collider bias is explained in more detail later in this chapter in section 2.5.10.  

 When using summary data, the sample size is typically larger than when using individual-level 

data, so there can be improved power to detect associations. Power calculations are usually 

undertaken post hoc, as the sample size is unlikely to be determined based on a MR study [303]. In 

this thesis, post-hoc power calculations were undertaken in Chapter 3 but not in Chapters 4, 5, or 6 

as for ‘omic’ data it is not known what effect sizes are meaningful clinically or at a population level for 

glioma risk, making it difficult to interpret power estimates.  

2.5.3  Two-sample Mendelian randomization  

Two-sample MR is a method that utilises associations between traits summary association 

data for each variant analysed in both the exposure and outcome GWAS. A key assumption of two-

sample MR is that both GWAS are derived from non-overlapping samples, however, the two samples 

should be representative of the same underlying population [304]. The association between the 

genetic variant and the exposure and outcome from each GWAS are then used to determine the causal 

effect of the exposure on the outcome [305]. Compared to a single-sample MR setting, two-sample 

MR can increase statistical power for analyses as it can make use of publicly-available summary 
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association results from large GWAS, epigenome-wide association studies (EWAS) and transcriptome-

wide association studies (TWAS). In the context of this thesis, two-sample MR is applied to the 

hypothesis-driven MR, methylome-wide MR, and transcriptome-wide MR to evaluate causal 

relationships between molecular phenotypes (i.e., DNA methylation and gene expression) and glioma 

risk.  

2.5.4 Selecting instrumental variables for Mendelian randomization 

Genetic variants used as instrumental variables should strongly associate with the exposure 

of interest at genome wide significance (p-value<5x10-8). At a minimum, two-sample MR requires the 

effect size for each genetic variant and its corresponding standard error, as well as the effect allele 

and the non-effect allele. Ideally, to perform two-sample MR analysis, it is also useful to have 

information on the effect allele frequency to assist in harmonisation of palindromic variants.  

Furthermore, due to linkage disequilibrium (LD) between SNPs (genetic correlation between 

SNPs that are close to one another in the genome) and the complexity of the genome it can be 

challenging to decipher bias that is due to non-independent instruments [306]. LD clumping is a 

statistical method that can be performed to reduce the number of correlated genetic variants included 

in an MR analysis [275]. In LD clumping, the p-value reported in the GWAS for the exposure of interest 

is used to list the genetic variants by the statistical strength of their association with this exposure. 

Clumping is the process which iteratively chooses the genetic variant most strongly associated with 

the exposure, then calculates the correlation between this genetic variant and all genetic variants 

within a specified region (typically 10,000 kilobases). Variants in this window that are correlated with 

the index variant using a specified r2 threshold (normally 0.001) are removed. For example, if the r2 

threshold is specified at 0.001 then only genetic variants with r2 of less than 0.001 are retained to 

ensure the genetic variants are independent of one another [307].  

If weak instrument bias (the IV is not strongly associated with an exposure) is present, then 

the effect estimate will be biased in the direction of the observational confounded association when 
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there is a large degree of sample overlap in two-sample MR. Where there is no or minimal overlap, 

the effect estimate will be biased toward the null [308]. The F-statistic is a method to estimate 

instrument strength. It is determined by the proportion of variance explained by the IVs, the sample 

size, and the number of instruments. Typically, MR studies use a conventional threshold of an F-

statistic of > 10 to indicate that weak instrument bias is unlikely. This is a general threshold and does 

not suggest that instruments should be excluded if they do not meet this threshold, rather if F-statistic 

<10 then weak instrument bias must be considered when interpreting effect estimates obtained.  

Genetic variants used as IVs, to proxy exposures of interest in an MR setting, also need to be 

extracted from the GWAS of the outcome of interest. This requires access to the full summary-level 

data reported in the GWAS for the outcome of interest. The same minimum requirements are needed 

for MR (effect allele, SNP effect, standard error, non-effect allele). If a genetic variant selected as an 

IV is not present in the outcome GWAS data, then a suitable LD proxy can be used in its place. In this 

thesis, suitable LD proxies were found using the “LDLink” R package, selecting SNPs with an LD 

measure (r2 ≥ 0.8), indicating they are in high LD (https://ldlink.nci.nih.gov/). Once the exposure and 

outcome data have been extracted, harmonisation is performed to ensure the effect estimates 

associated with each SNP refer to the same allele in both datasets. However, if the effect allele is 

unclear due to the presence of palindromic SNPs (where the forward and reverse strand of DNA reads 

the same in both directions), the effect allele frequency can be used to decipher the reference strand. 

By comparing the allele frequency for the palindromic SNP in both the exposure and the outcome 

study the reference strand can be determined. However, if the effect allele frequency is close to 0.5 

then the reference strand cannot be determined and palindromic SNPs are removed [220]. 

2.5.5 Wald ratio  

In settings where a single SNP is used as an IV, the Wald ratio can be employed to estimate 

the effect of a particular exposure on an outcome by dividing the SNP-outcome association by its SNP-

exposure association [309]. Single SNP IVs are common for ‘omic’ exposures due to limited sample 

https://ldlink.nci.nih.gov/
https://mr-dictionary.mrcieu.ac.uk/term/gene
https://mr-dictionary.mrcieu.ac.uk/term/gene
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sizes of GWAS, for instance, gene expression [310], DNA methylation [311] and protein levels [312]. 

Throughout this thesis the Wald ratio will be used to calculate estimates of the effect of various 

exposures on glioma risk.  

2.5.6 Inverse variance weighted model  

In cases where there is more than one SNP that can act as an IV, a more precise causal estimate 

can be generated by utilising information from all the genetic variants. If individual-level data are 

available for the exposure, then the causal estimate can be calculated using the two-stage method 

which consists of two regression stages: 1) the exposure is regressed upon the IV to calculate fitted 

values of the exposure; 2) the outcome is then regressed on these fitted values of the exposure.  

The inverse variance weighted (IVW) method is an extension of the Wald ratio for when there 

are multiple IVs available. If the genetic variants are not in LD, then the Wald ratios can be combined 

into a single causal estimate using a meta-analysis method [313]. If the genetic variants are in LD then 

you need to adjust for LD in the IVW model using an appropriate reference panel e.g. of European 

individuals (CEU) from phase 3 (version 5) of the 1000 Genomes project [314]. Standard errors can be 

approximated using the delta method [315].  

In addition to the core IV assumptions, the InSIDE assumption (Instrument Strength 

Independent of Direct Effect) is required for IVW and MR-Egger models (discussed in section 2.6.2). 

This assumption ensures that there is no association between instrument strength and direct effect 

of SNPs included as instruments [316].  

2.5.7 Mendelian randomization considerations for causal inference   

Even when MR effect estimates are valid, these estimates may be different to the effect of 

targeting a particular risk factor (that had MR evidence of an effect) in a clinical trial [317]. There are 

several reasons for this: MR uses germline genetic variants as proxies which often represent a long-

term difference in an exposure; therefore, there might not be an intervention which can target an 
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exposure in clinical trials that can replicate this long-term difference. Hence, as MR typically examines 

long-term effects of exposure on outcomes, short-term exposure to a risk factor cannot typically be 

assessed by MR. Similarly, genetic variants used as instrumental variables reflect an average difference 

in the levels of the putative risk factor. Therefore, MR associations reflect a difference in the average 

level of putative risk factor at the population level, but the true variability in levels of the risk factor 

within the population may be wider. In addition, the MR model requires a linear relationship between 

the risk factor and the outcome. As many risk factors are known to vary over time [318], MR 

associations may not reflect a true effect size for these risk factors. MR effect estimates can be 

attenuated toward the null if canalization has occurred [319]. This is a process where compensatory 

mechanisms can develop in response to a change in normal development, to protect against adverse 

effects caused by the deviation from normal development. Canalization can alter the association 

between genetically proxied levels of an exposure and an outcome [320]. However, the MR effect 

estimate is useful to quantify the causal relevance of the exposure in relation to the outcome even if 

the point estimate is biased.   

2.5.8 Violation of the assumptions  

The IV assumptions (Figure 2-2) can be violated in several ways. To briefly recap, the IV 

assumptions are, i) the variable Z (instrumental variable) is associated with the risk factor of interest 

X, ii) the variable Z is independent of all variables, including error terms U, and iii) Z affects Y (outcome) 

only through X. The F-statistic can be used to test the first IV assumption. While it is not possible to 

statistically prove the second and third IV assumptions, several methods exist that can be used to 

attempt to refute them. Horizontal pleiotropy refers to the setting where an instrument is associated 

with at least one trait that influences an outcome of interest independent to the exposure. Horizontal 

pleiotropy violates the third IV assumption. Vertical pleiotropy is where the genetic variant used as IV 

associates with one or more trait(s) on the same causal pathway between the exposure and outcome 

and therefore does not violate IV assumptions. Violations of the second IV assumption can occur 
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through genetic confounding if genetic variants are correlated through linkage disequilibrium (LD), 

whereby two genetic variants in high LD influence both the exposure and the outcome through distinct 

pathways. Several sensitivity analyses exist that can be used to evaluate the presence of pleiotropy 

and genetic confounding by LD, which are discussed later in this chapter. 

If a population is comprised of several ancestral origins, then spurious associations between 

an exposure and outcome can be generated due to differences in the frequency of one or more genetic 

variants used to instrument an exposure and differences in a particular disease outcome across 

ancestries (termed “population stratification”). To minimise confounding due to population 

stratification, genetic analyses are often restricted to participants of the same ancestral background, 

and adjustment for principal components of genetic ancestry.  

2.6 Sensitivity analyses to assess violations of the IV assumptions.   

MR has been shown to be a powerful tool to establish causal inference in epidemiological 

studies because it reduces reverse causation and confounding. MR provides an unbiased causal 

estimate of the effect of the exposure on the outcome if the instruments satisfy the MR assumptions 

[101]. However, if the instruments are invalid, then the effect estimate will represent a biased causal 

effect.   

2.6.1 Pleiotropy 

Pleiotropy is a key limitation that needs to be considered when examining MR effect estimates. 

Two types of pleiotropy were described in Chapter 1 of this thesis, “vertical pleiotropy”, whereby the 

genetic instrument influences one exposure, which in turn then influences another exposure on the 

same causal pathway to the outcome. Thus, this does not invalidate the MR effect estimate. However, 

“horizontal pleiotropy” arises when a genetic instrument associates with more than one trait, which 

influences the outcome independently of the exposure of interest. Horizontal pleiotropy can either be 

balanced, which does not bias the IVW effect estimate, or unbalanced (directional) which is associated 

with a biased MR estimate, diminished statistical power, and type 1 errors [321]. The issue of 
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horizontal pleiotropy has proved difficult to address, as GWAS have shown that genetic variants 

regularly have pleotropic effects in complex diseases [322, 323]. Due to the ubiquity of horizontal 

pleiotropy, methods have been developed to generate unbiased causal estimates in the presence of 

horizontal pleiotropy, while introducing further assumptions. 

2.6.2 MR-Egger  

The MR-Egger method can be used to evaluate the presence of directional (unbalanced) 

pleiotropy, then, if present, it can generate causal estimates “adjusted” for directional pleiotropy 

[316]. The method is comprised of three stages: an MR-Egger intercept test to evaluate the presence 

of directional pleiotropy; MR-Egger regression which is a modified version of the IVW model whereby 

the intercept is not constrained to zero; and the MR-Egger estimate which is derived from the slope. 

Additionally, the MR-Egger effect estimate is only robust if the InSIDE assumption (Instrument 

Strength Independent of Direct Effect) is met.  

If many genetic variants are used as IVs in an IVW model, there may be insufficient knowledge 

of their biological function and some SNPs may have pleiotropic effects [324]. Heterogeneity, a 

potential indicator of horizontal pleiotropy, between genetic variants can be explored statistically by 

calculating Cochran’s Q statistic [325]. For some risk factors explored in Chapter 3, a larger number of 

genetic variants were used, therefore heterogeneity could be explored across both IVW and MR-Egger 

models.  

2.6.3 Colocalization 

Genetic variants can be correlated due to LD, resulting in violation of the second IV assumption 

if genetic variants in LD causally influence the exposure and the outcome through different pathways. 

This type of genetic confounding is analogous to bias by horizontal pleiotropy. If the MR estimate is 

derived using a large number of IVs, then it is less likely that the MR association will be biased by 

genetic confounding, however, it should be considered when single IVs are used.  



 

65 
 

Colocalization can be used as a sensitivity analysis in a single IV MR setting to provide further 

evidence of a causal association between an exposure and outcome [241]. Colocalization methods can 

highlight false MR associations that result from LD between two functional variants or because the 

incorrect risk factor is being examined (for example, differential gene expression of a gene in high LD 

with the gene of interest). Colocalization approaches take a region of a chromosome that is associated 

with an exposure and outcome to determine if the same genetic variants are driving the associations 

with both traits [241]. If the two traits show evidence of colocalization i.e., the same genetic variants 

are responsible for the association with each trait, then it is probable that the same biological 

mechanism gives rise to both associations [326]. In this way, colocalization indicates a shared aetiology 

between both traits. It is important to note that colocalization cannot distinguish between vertical 

and horizontal pleiotropy.  

The colocalization approach makes three assumptions: There is only one causal SNP within 

each region examined; the probability that any one SNP is causal is independent of the probability 

that another SNP within the genome is causal; and all causal SNPs are included in the analysis (either 

genotyped or imputed) [241]. The colocalization approach requires prior probabilities that any 

random SNP within the region associates with trait 1 (p1), trait 2 (p2) or both traits (p12); the default 

is p1 = 1x10-4, p2 = 1x10-4, p12 = 1x10-5 [327]. Colocalization provides a posterior probability to 

evaluate the evidence for each of the five hypotheses [327]. The five hypotheses are: 

- H0: No association with either trait.  

- H1: Association with trait 1 only. 

- H2: Association with trait 2 only. 

- H3: Distinct causal variants, a variant is associated with trait 1 and a different variant is 

associated with trait 2.  

- H4: Shared causal variant, a single variant is associated with both trait 1 and trait 2.  
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Hypothesis H4 is indicative of colocalization; a high posterior probability (e.g., >80%) for 

hypothesis H4 can be interpreted as evidence that two traits are colocalized [241]. Colocalization was 

used in this thesis using summary association data of DNA methylation, tissue-specific differential 

gene expression, differential single-cell gene expression data and glioma risk to evaluate evidence for 

each of the five configurations. The colocalization analysis was conducted using the “coloc” R package 

[328].  

Colocalization can produce unreliable results if there are several causal SNPs within the region 

examined. To increase the reliability of causal inference from the colocalization analysis, pairwise 

conditional and colocalization analysis (PWCoCo) can be implemented [329]. In brief, PWCoCo works 

by performing conditional analyses to identify multiple causal SNPs within a genomic region for the 

two traits examined. Next, PWCoCo performs colocalization for each pair of conditionally independent 

SNPs for the two traits using summary-level data [330].  

2.6.4 Multiple trait colocalization  

Multiple trait colocalization (moloc) extends the coloc framework to test for a shared causal 

variant across three or more traits. This is particularly relevant in a cancer setting, as cancer occurs 

due to an accumulation of genetic mutations in conjunction with epigenetic changes. Moloc is a 

Bayesian statistical method that can be applied to improve knowledge of a causal pathway, for 

example, if MR reports associations between DNA methylation-disease risk and differential gene 

expression-disease risk, moloc can help to evaluate if there is a shared regulatory mechanism. The 

absence of an overlap could be due to mQTL capturing different aspects of biology of complex traits 

[331]. In this thesis, moloc is applied to integrate data on glioma risk, DNA methylation and gene 

expression (A = eQTL, B = mQTL, C = glioma). Moloc default prior probabilities were implemented (p1 

= 1x10-4, p2 = 1x10-6 and p3 = 1x10-7), p1 corresponds to only one trait having an association in the 

region, p2 corresponds to two traits having an association in the region and p3 for colocalization of all 
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three traits. The posterior probability that multiple omic traits and a complex trait share a causal 

genetic variant is evaluated for 15 hypotheses (Table 2-1).  

Configuration Hypothesis  Evidence of colocalization  

NULL H0 No associations  No 

C H1 - Association for glioma GWAS  No 

B H2 - Association for methylation only No 

A H3 - Association for gene expression only No 

BC H4 - Association for glioma GWAS and methylation  Glioma GWAS and DNA methylation  

AB H5 - Association for methylation and gene expression  DNA methylation and gene expression 

AC H6 - Association for glioma GWAS and gene expression  Glioma GWAS and gene expression 

B,C H7 - Association for glioma GWAS and methylation - 
two distinct causal variant  

No 

A,B  H8 - Association for DNA methylation and gene 
expression - two distinct causal variants 

No 

A,C H9 – Association for glioma GWAS and gene expression 
– two distinct causal variants  

No  

C,AB H10 – Association for all traits – two distinct causal 
variants  

DNA methylation and gene expression, 
not glioma GWAS 

A,BC H11 – Association for all traits – two distinct causal 
variants  

Glioma GWAS and DNA methylation, not 
gene expression  

B,AC H12 - Association for all traits – two distinct causal 
variants 

Glioma GWAS and gene expression, not 
DNA methylation 

A,B,C H13 - Association for all traits – three distinct causal 
variants 

No 

ABC H14 - Association for all traits – one causal variants Glioma GWAS, DNA methylation, and 
gene expression 

Table 2-1 – The 15 configurations from a moloc analysis. Each configuration indicates how the genetic variants may 
influence the traits. 

2.6.5 Directionality test  

To increase the likelihood that MR infers the correct causal direction between an exposure 

(e.g., DNAm) and an outcome (e.g., glioma), I applied the Steiger filtering method to test for reverse 

causation [242]. Steiger filtering reduces the likelihood that instruments are associated with the 

outcome via a pathway other than through the exposure, which would violate the MR assumptions, 

by removing SNPs that do not explain a greater proportion of the variance in the exposure compared 

to the outcome [242]. Steiger filtering was performed for the putative causal variants identified in the 

MR analysis and showed evidence of colocalization.  
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2.7 Extensions to the two sample MR model 

2.7.1 Two-step MR 

Two-step MR can be applied to determine the mediating role of a trait, for example an 

epigenetic marker, between an exposure and disease (Figure 2-3). The first step in the approach is to 

establish if the exposure has a causal effect on the mediator. In the second step, genetic instruments 

for the putative causal mediator are used to establish causal effects of the mediator on disease risk. 

MR evidence of a causal effect in both steps suggests a level of mediation of causal relationship 

between the exposure and the outcome by the mediator [260]. Two-step MR will be combined with 

two-sample MR and used in this thesis to establish if DNA methylation mediates the causal effect 

between the systematically identified putative causal risk factors and glioma risk.  

 

Figure 2-3 - Directed acyclic graph (DAG) of two-step Mendelian randomization. Used to estimate if DNA methylation 
mediates the effect of an exposure on glioma risk where Z is the genetic variant. The dashed line indicates an association 
investigated in the first or second step.  

2.7.2 Multivariable MR  

Multivariable MR is an MR method which includes genetic instruments for more than one 

exposure [268]. Multivariable MR is useful when genetic variants are pleiotropic (single locus affects 

multiple traits), which can make it challenging to identify a relevant genetic variant that is not 

associated with another related risk factor. For example, the genetic variants associated with 

lipoprotein metabolism seldom associate with just one lipid fraction [332, 333]. For correlated 

phenotypes, such as lipids, a univariable MR model is likely to infer an incorrect causal effect due to 

the pleiotropic violation of the instrumental variable assumptions. Multivariable MR is an extension 

to the univariable MR model that can incorporate several correlated phenotypes. By adjusting for each 

phenotype incorporated into the model, multivariable MR is able to infer the direct effect of each 
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exposure on an outcome [334]. Multivariable MR is applied in Chapter 3 to examine the causal role of 

lipids in risk of glioma.  

 The IV assumptions required for multivariable MR are: each exposure is predicted by the 

genetic variants; instruments (Z) are strongly associated with exposures/mediators (X) conditional 

upon other exposures/mediators in the model (IV1); there are no confounders of any of the 

exposure/mediator (X) and outcome (Y) associations (IV2); and there is no pathway through which an 

instrument (Z) influences an outcome (Y) except through the set of exposures (X) included in the model 

(IV3). If these assumptions are met the multivariable MR estimate will represent the direct effect of 

each exposure [335]. However, by incorporating several exposures in the MR model, statistical power 

and conditional instrument strength can be reduced.  

2.7.3 Bidirectional MR  

 Bidirectional MR is a method that can be utilised to orient the direction of effect between two 

variables when the causal direction is unknown. The MR analyses are performed using the same two 

traits used in the initial MR analysis, but the direction is reversed. In this way, the original exposure 

becomes the outcome, and the original outcome becomes the exposure. Bidirectional MR requires 

genetic instruments for both traits. It is important to interpret the causal estimate from bidirectional 

MR with caution as it is possible that the IV assumptions are violated if the genetic variant used as an 

IV influences both traits. If there is a causal association in both directions then this could be due to a 

true bidirectional relationship, reflect horizontal pleiotropy, or reflect a violation of the 

exchangeability assumption due to confounding by population stratification. 

2.8 Polygenic risk scores (PRS) 

As MR is restricted to using genetic instruments that survive conventional GWAS statistical 

threshold corrections to account for the high multiple testing burden (p-value < 5×10−8), PRS can be 

used in conjunction with an MR analysis to evaluate if the MR association is consistent with another 

model which typically includes a larger number of genetic variants (p-value < 1×10−5). A PRS can 



 

70 
 

increase the power of an analysis, as it can capture a larger proportion of the variance in the exposure 

under examination.  

Characteristically, for polygenic exposures, single genetic variants explain a small proportion 

of the phenotype, however, the combination of genetic variants can explain a larger proportion of this 

variation. PRS can help in settings where MR genetic instruments alone explain a limited amount of 

the variance in a trait, thus potentially leading to weak instruments and lowering statisitcal power. 

Therefore, I incorporated PRS to aid the process of investigating the aetiology of glioma. I applied 

BADGERS (Biobank-wide association discovery using genetic risk scores) to detect associations 

between the systematically identified risk factors in Chapter 3 and glioma risk using summary-level 

data [336]. Unlike other PRS approaches, BADGERS can use summary data and does not require 

multiple exposures to be examined within the same cohort. The associations identified by BADGERS 

are unlikely to reflect causal relationships, as the IV assumptions are expected to be violated. 

However, they can be used to assess associations when a larger number of genetic variants are 

included. 

2.9 Data sources  

Throughout the entirety of this thesis, I use a range of different data sources, some of which 

are used to generate results in multiple chapters. The aim of the following section is to summarise and 

highlight the different data resources and to describe each study in detail so that the reader can refer 

to this section if required in subsequent chapters.  

2.9.1 Glioma risk GWAS meta-analysis  

Genetic variants associated with glioma risk or histological subtype stratified risk 

(glioblastoma and non-glioblastoma) were obtained from a meta-analysis of eight GWAS, with a total 

of 12,496 cases and 18,190 controls, as proxies for glioma throughout the course of this thesis. The 

participants of all eight studies were of European ancestry [337]. The cases were classified as having 

a diagnosis of glioma established through histology, and further sub-classified into glioblastoma (6,191 

cases) and non-glioblastoma (5,819 cases). 
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Below is a summary of the individual GWAS datasets included in the meta-analysis, including 

the number of glioma cases and non-glioma controls from each of the eight GWAS (GICC, UK, French, 

German, MDA, SFAGS, GliomaScan and UCSF-Mayo). GICC [338] comprised of 5,189 glioma cases and 

3,827 controls that were drawn from centres in the USA, Denmark, Sweden and the UK. After 

implementing quality control, details of which can be found in the glioma GWAS meta-analysis [339], 

4,572 cases and 3,286 controls remained for further analysis. The UK GWAS [340-342] included 636 

cases obtained from the INTERPHONE study [343]; 2,930 controls were ascertained from the 1958 

Birth Cohort. The French GWAS [340, 342] consisted of 1,495 glioma cases from the Service de 

Neurologie Mazarin, Groupe Hospitalier Pitié-Salpêtrière Paris. The 1,213 controls were taken from 

SU.VI.MAX (Supplementation en Vitamines et MinerauxAntioXydants) [344]. The German GWAS [342] 

included 880 cases that had received surgical resection for glioma. The controls were taken from three 

different studies, 488 controls from KORA (Co-operative Health Research in the Region of Augsburg) 

[345], 678 controls from POPGEN (Population Genetic Cohort) [346], and 380 controls from the Heinz 

Nixdorf Recall study [347]. The MDA GWAS [341] comprised of 1,281 cases from the MD Anderson 

Cancer Center, Texas and 2,245 controls were ascertained from Cancer Genetic Markers of 

Susceptibility [348, 349]. The UCSF adult glioma case–control study (SFAGS–GWAS) comprised of 677 

cases and 3,940 [350, 351]. The authors included a total of 1,653 cases and 2,725 from the GliomaScan 

GWAS [352]. The UCSF-Mayo study included 945 cases and 574 cases [342, 350, 352].  

Due to lack of availability of data, a subset of the glioma GWAS, which comprised of 5,739 

cases and 5,501 controls, were utilised in Chapter 3. The full summary glioma GWAS data were used 

in Chapters 4, 5 and 6.  

2.9.1.1 Genotyping and quality control of the meta-analysis  

Genotyping of the individual studies included in the meta-analysis has been described in detail 

elsewhere [337]. For the seven studies (GICC, UK, French, German, MDA, SFAGS, GliomaScan) the data 

were imputed to >10 million SNPs using IMPUTE2 (v2.3) [353] and the reference panels 1000 Genomes 
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Project CEU (phase 1 integrated version 3 release) [354] and UK10K [355] were used. SNPs that 

displayed a poor level of imputation (information rate < 0.40 with IMPUTE2) or exhibited significant 

deviation from Hardy-Weinberg equilibrium were excluded (P< 1×10-8). SNPTEST (v2.5) was used to 

test the associations between imputed SNPs and glioma risk [337]. For the UCSF-Mayo GWAS 

genotyping was performed using STRUCTURE [356], with the 1000 Genomes Project reference panel 

(phase 1 integrated version 3 release) [354]. Imputation was performed using the Michigan 

Imputation Server [357] with HapMap version 1 as the reference panel [358]. The glioma GWAS meta-

analysis was undertaken using the fixed-effects inverse-variance method using METAL (v1.6) [359]. 

The meta-analysis was adjusted for age, sex and the first two principal components, created for the 

GICC, GliomaScan, MDA and SFAGS utilizing PLINK [360]. 

2.9.2 Exposure data sources  

The analyses performed in this thesis largely utilise epigenetic and genetic data from the 

Genetics of DNA Methylation Consortium (GoDMC) [361], the Genotype-Tissue Expression project 

(GTEx) v8 (n=1,194)[362], eQTLGen Consortium (eQTLGen) [https://www.eqtlgen.org/] [363], a GWAS 

meta-analysis of gene expression within 8 brain cell types [364] and from a GWAS meta-analysis of 

gene expression and alternative splicing within human microglia [365]. Each data source is briefly 

described below. Further details on each dataset are provided in the relevant results chapters.  

2.9.3 Methylation data  

mQTLs to proxy DNA methylation in blood tissue were obtained from the Genetics of DNA 

Methylation Consortium (GoDMC) [361] meta-analysis of 38 studies. The meta-analysis comprised of 

32,851 individuals (27,750 individuals were of European ancestry) and associations between genetic 

variants and site-specific DNA methylation in whole blood tissue were identified at 420,509 sites. 

Samples were genotyped using the Illumina HumanMethylation BeadChip and imputation was 

performed using the 1000 Genomes Project reference panel [354]. Inverse variance fixed effect meta-

analysis was undertaken using SNP effect estimates and standard errors using METAL [366].  

https://www.eqtlgen.org/
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2.9.4 eQTLGen Consortium 

Genetic variants associated with differential gene expression in blood tissue were obtained 

from a meta-analysis of 37 GWAS, which comprised of 19,942 genes from 31,684 individuals [363]. 

Whole blood was used to derive associations. Several expression profiling platforms were utilised in 

the 37 GWAS [Illumina (55% of included studies), Affymetrix U291 (8.7%), Affymetrix HuEx v1.0 ST 

(16%) expression arrays and RNA-seq (20.3%)]. The majority of samples were of European ancestry, 

however, a small subset of studies included samples of non-European ancestry, i.e., 1,404 

Bangladeshi, 175 Arabs and Amazighs and 115 Chinese. Imputation was performed using the 1000 

Genomes Project CEU reference panel (phase 1 integrated version 3 release) [354] for 36 of the GWAS. 

The GWAS meta-analysis was undertaken using a weighted Z-score method [367]. Each analysis was 

adjusted for confounders, such as batch effects and difference in cell type composition, by correcting 

expression data for up to 25 expression principal components.  

2.9.5 Genotype-Tissue Expression project 

Genetic variants associated with differential gene expression in whole brain tissue (10 brain 

regions) were obtained from a meta-analysis of three GWAS from 1,194 individuals [362]. The data 

were imputed to the 1000 Genomes Project CEU reference panel (phase 1 integrated version 3 release) 

[354] in each GWAS. RNA-sequencing was used to measure gene expression and GENCODE was used 

for the annotation [368]. The meta-analysis was performed using a cis-eQTL data in correlated samples 

(MeCS) method, which was incorporated into the summary-based MR package [369]. Additional 

details of MeCS are provided in the original manuscript [362]. Effect estimates were provided in 

standard deviation units based on the expression level of each gene.  

2.9.6 Single-cell gene expression and alternative splicing data  

Summary genetic association data from a GWAS meta-analysis of gene expression within 8 

brain cell types (astrocytes, endothelial cells, excitatory neurons, inhibitory neurons, microglia, 

oligodendrocytes, oligodendrocyte precursor cells/committed oligodendrocyte precursors 
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[OPCs/COPs], and pericytes) were obtained from 373 samples from 196 individuals of European 

ancestry [364]. The meta-analysis was comprised of 4 studies which included 7,607 genes with a 

reported cis-eQTL. cis-eQTLs were generated by examining all SNPs within a 1-megabase (Mb) window 

around the transcription start site of each gene, after adjusting for study, disease status, genotype 

first principal components and expression principal components. Samples were genotyped using the 

GSAv3 Illumina ChIP, imputed using the Haplotype Reference Consortium reference panel (version 

r1.1) [370] and lifted over to GRCh38. PLINK [360] was used for genotype processing and quality 

control. SNPs with an imputation score <0.4 or with missingness greater than 5% were excluded as 

well as individuals with more than 2% of missing genotypes. SNPs that exhibited significant deviation 

from Hardy-Weinberg equilibrium were excluded (P< 1×10-8).   

Summary genetic association data were used from a GWAS meta-analysis of gene expression 

and alternative splicing within 4 different brain regions of 255 primary human microglia samples from 

90 individuals [365]. eQTLs and splicing quantitative loci (sQTLs) were constructed using the Illumina 

Infinium Global Screening Array. Imputation was performed using the Michigan Imputation Server 

[357] and the 1000 Genomes Project reference panel (phase 1 integrated version 3 release) [354]. cis-

eQTLs were generated by examining all SNPs within a 1-megabase (Mb) window around the 

transcription start site of each gene. cis-sQTLs were generated by examining all SNPs within a 100-kilo 

base (kb) window from the middle of each intron cluster. A random effects meta-analysis was 

performed using METASOFT [371].  
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3 Chapter 3: Testing for causality between 
systematically identified risk factors and glioma: a 
Mendelian randomization study. 
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3.1 Abstract 

In Chapter 1, a summary of epidemiological studies that have provided evidence of 

associations between putative risk factors and glioma onset was provided, as well as the challenges 

faced by observational studies when inferring causality. In Chapter 2 the concept of Mendelian 

randomization (MR) to infer causality was described.  

In this chapter a systematic search is performed to identify candidate risk factors and a meta-

analysis of two glioma genome-wide association studies (GWAS) (5,739 cases and 5,501 controls) is 

conducted. MR analyses were performed using genetic variants as proxies for 36 candidate risk factors. 

Polygenic risk scores (PRS) were calculated to enhance detection of causal effects. The aim of this 

chapter was to assess whether the 36 previously reported glioma risk factors showed evidence of an 

association with glioma risk. 

MR provided evidence that a genetically proxied telomere length was associated with an 

increased risk of glioma (odds ratio [OR] per standard deviation (SD) increase in telomere length 4.09, 

95% confidence interval [CI] 1.13-14.86, p=0.032) and non-glioblastoma (OR 4.05, 95% CI 1.72-9.56, 

p=0.001). The MR estimate was similar across MR-Egger, weighted median, and weighted mode, 

which detected the presence of horizontal pleiotropy. Using the inverse-variance weighted (IVW) 

method, MR provided evidence that childhood extreme obesity, allergic disease, low-density 

lipoprotein cholesterol, triglycerides and alcohol consumption were aetiologically relevant in glioma 

risk. However, sensitivity analyses indicated that the IVW MR estimate was likely biased for the 

association between childhood extreme obesity, allergic disease, low-density lipoprotein cholesterol, 

triglycerides, and alcohol consumption with glioma risk. 

 

 

 



 

77 
 

3.2 Introduction  

The incidence of cancer within the central nervous system and the brain, including glioblastoma, 

is reported to be increasing in numerous countries [372, 373]. An explanation for the observed 

increase in incidence is yet to be established and possible causal risk factors can only be speculated. 

Reasons influencing the incidence rate may incorporate a more accurate diagnosis due to 

developments in molecular profiling and neuroimaging, an aging population, exposure to 

radiofrequency electromagnetic fields and pollutants  [374-377]. Additional research is necessary to 

improve the understanding of causal glioma risk factors to establish how to prevent glioma.  

 Before utilising multi-omic data to better understand glioma risk factors, a knowledge of risk 

factors with observational evidence of an association with glioma is required. Once putative risk 

factors have been identified from the literature, genetic data can be incorporated to augment causal 

understanding. If causal extrinsic risk factors are determined it offers the potential to prevent glioma 

onset. Lastly, identifying the molecular pathway from a risk factor to glioma could allow for the 

possibility to discover molecular intermediates, hence providing the opportunity to establish novel 

therapeutic strategies which could potentially reduce the risk and mortality of glioma.  

 Observational studies are prone to confounding and reverse causation which makes inferring 

causality a challenge. Mendelian randomization (MR) is a well-established technique that utilises 

genetic variants as instrumental variables (IVs) to proxy a wide range of exposures, overcoming some 

of the limitations of conventional epidemiological studies. A full description of the different MR 

designs and the methodology behind each one is described in Chapter 1 and 2.  

Briefly, MR analysis is based upon the following three assumptions (Figure 3-1) [378]: the 

single nucleotide polymorphisms (SNPs) selected as IVs to proxy the exposure are robustly associated 

with the exposure; the SNPs have no association with any confounders of the IV–outcome association; 

and the SNPs are only associated with the outcome through their effect on the exposure. 
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Figure 3-1 – Mendelian randomization assumptions. The single nucleotide polymorphism (SNP) utilised as an instrument 
must robustly associate with the exposure of interest, not associate with any confounders of the exposure-outcome 
association, and the SNP must not directly associate with the outcome outside of the exposure of interest.  

Within the constraints of these assumptions, SNPs can be used as proxies for a large range of 

modifiable exposures. Two-sample MR techniques allow analysis using summary data from genome 

wide association studies (GWAS) conducted in two independent samples: one set for the exposure of 

interest and one for the outcome [219]. An important application of MR is to elicit causal evidence for 

putative observational associations in cancer [379]. 

There have been previous MR studies that have investigated potential risk factors for glioma. 

Two MR studies reported that a genetically proxied increase in telomere length was associated with 

an increased risk of glioma [odds ratio (OR) per standard deviation (SD) increase in telomere length 

5.27, 95% confidence intervals (CI) 3.15-8.81] and (OR 1.12, 95% CI = 1.09-1.16, P = 3.83×10−12), 

respectively [380, 381]. Other MR studies have reported little evidence of an association between 

glioma risk and previously reported risk factors, such as for obesity-related factors, vitamin D and 

atopy [258, 259, 382]. A full description of all MR studies examining the association between 

genetically proxied risk factors and glioma risk is provided in Chapter 1. 

Polygenic risk scores (PRS) can be used in conjunction with MR to assess whether MR 

associations between a risk factor and glioma are consistent when a larger number of genetic 

instruments are included in the model. PRS include a greater number of genetic variants owing to a 
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less stringent p-value threshold for inclusion and typically explain a larger proportion of the variance 

explained in an exposure; therefore, they may have an increased power to discover genetic aetiology. 

Nevertheless, PRS may indicate a strong association between two traits (i.e., a risk factor and glioma) 

which may be a result of correlation or causality. The observed association may represent correlation 

if the two traits have a shared genetic aetiology. PRS have been successful for polygenic exposures 

where only a few risk variants reach genome wide significance [383]. However, if SNPs included in the 

PRS violate the IV assumptions then the estimate is likely to be biased. The combined use of PRS and 

MR can be a useful tool for understanding the aetiology of glioma and to separate correlation from 

causation. 

3.2.1 Chapter Objectives  

The aim of this chapter was to identify risk factors that have been investigated using traditional 

observational epidemiology and to examine the nature of the association between these putative risk 

factors and glioma onset using MR and PRS.  
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3.3 Methods  

3.3.1 A summary of the analysis pipeline  

A summary of the analysis plan can be found in Figure 3-2. Ethical approval was not required 

for this specific analysis as the entirety of the data was sourced from the summary statistics of 

published GWAS and no individual-level data was used.  

 

Figure 3-2 – Flow diagram of the analysis plan. GWAS, genome wide association studies; LDSC, linkage disequilibrium score 
regression; MR, Mendelian randomization; WME, weighted median estimate; MBE, mode-based estimate; PRS, polygenic risk 
scores.  

3.3.2 Identification of risk factors from observational studies  

To systematically and comprehensively identify all previously reported non-genetic or non-

epigenetic risk factors for glioma from the existing published literature, a formal systematic search of 

MEDLINE and Embase from inception to October 2018 using the Ovid Platform was conducted [384]. 

The initial search strategy was designed to identify studies that report looking at ("risk" or a variety of 

exposures) AND (glioma or some form of glioma) AND (are systematic reviews). Secondly, primary 

studies that examined glioma risk were included in the search. In addition, reference lists of included 
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manuscripts were also searched to ensure texts were not missed. Details of the search strategy are 

provided in Appendix 1.1 and the inclusion and exclusion criteria are provided in Table 3-1.  

Inclusion and Exclusion criteria 
Inclusion criteria: Studies that have examined the association between a non-genetic or non-epigenetic exposure and 
glioma in humans 
Exclusion criteria: 
• Studies which have examined genetic risk factors (e.g., SNPs, mutations) 
• Studies which have examined epigenetic risk factors (e.g., DNA methylation) 
• Studies which have examined RNA levels as risk factors 
• Studies which did not link exposure with disease (e.g., descriptive studies looking at, for e.g., prevalence) 
• Case-only studies (including case reports and case series) 
• Animal or in vitro studies 
• Studies which looked at the outcomes of glioma treatment (including surgery) 
• Narrative reviews 
• Family studies (Familial risk) 
• Mendelian randomization studies  
• Missing full text  
• Study was not published in English  
• Childhood glioma (>50% of glioma cases occurred in patients <18y of age/equivalent) 
• Studies that do not specify glioma as an outcome of interest 

Table 3-1 - Search strategy to identify glioma risk factors from observational studies that have been examined in the 
literature. Risk factors were applied to a Mendelian randomization setting to determine whether they increase or decrease 
the risk of glioma. 

To ensure the same text was not screened multiple times, duplicates were removed using the 

duplicate removal function in Endnote X7 software. All studies were then screened based on title and 

abstract. If the study was included at this stage the full text was retrieved and reviewed for eligibility. 

Risk factors from eligible studies were extracted (all risk factors reported in the studies were extracted 

regardless of whether they displayed significant associations with glioma). No results (association 

between risk factor and glioma) were extracted from these studies as my interest was in identifying 

putative risk factors for subsequent MR analysis, not summarizing the results.   

3.3.3 Genetic instrument selection  

The summary genetic instrumental variables for the 36 identified risk factors were primarily 

collated from GWAS, details of which are given in Table 3-2.  Where the full GWAS results were not 

available, the instruments were collated from the NHGRI-EBI GWAS Catalogue  [385]; alternatively, 

when the full summary results were available, instruments were collated from MR-Base [239]. Genetic 

instruments were formed using SNPs shown to robustly (P < 5x10−8) and independently (r2 < 0.001) 

associate with the risk factor under examination in individuals of European ancestry.   
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Risk factor  No of 
participants if 
continuous or 
No. cases if 
binary 

No. 
controls 

SD Units  No. of 
SNPs by 
IVW 

Pop. PubMed ID 

Alcohol Consumption 112117 - - SD proxy 4 EUR 28937693 

Allergic disease 180129 180709   Log 
odds 

74 EUR 29083406 

Alzheimer’s  25580 48466 - Log odds 20 EUR 24162737 

Birth weight 142677 - - SD 49 EUR 27680694 

Body mass index 681275 - - SD  545 EUR 30124842 

Breast Cancer 228951 122977 - Log odds  150 EUR + 
EA 

29059683 

Caffeine consumption 47341 - - SD 2 EUR 21490707 

Cannabis use 184765 - - SD 5 EUR 30150663 

Coffee consumption 91462 - 1.88 Cups per day 3 EUR 25288136 

Compound smoking index 462690   0.69   117 EUR doi: 
https://doi.
org/10.110
1/381301 

Educational attainment 
(college completion) 

280007 - - Log odds 27 EUR 27225129 

Educational attainment 
(years of education) 

293723 - - SD (Years) 49 EUR 27225129 

Eosinophil count 173480 - - SD 81 EUR 27863252 

Epilepsy  10064 30725 - Log odds 4 EUR + 
Asian 
+ 
Africa
n  

25087078 

Food allergy 497 2387 - Log odds 2 EUR 29051540 

Height 693529 - - SD  1388 EUR 30124842 

High density lipoprotein 
cholesterol  

188577 - - SD 121 EUR 24097068 

Hypertension 69395 - - SD 10 EUR 21909115 

Immunoglobulin E  5209 - - Log 
transformed 

3 EUR 22075330 

Insulin-like growth factor 
binding protein-3  

18995 - - SD 5 EUR 27329260 

Insulin-like growth factor-1 30884 - - SD 9 EUR 27329260 

Iron levels 23986 - - SD 2 EUR 25352340 

Low density lipoprotein 
cholesterol  

188577 - - SD 96 EUR 24097068 

Melanoma  6628 287591 - Log odds 12 EUR 28212542 

Menarche (age at onset) 182416 - 1.43 Years 97 EUR 25231870 

Menopause (age at onset) 3493 13598 3.93 Log odds 4 EUR 23307926 

Obesity (early onset)  1509 5380 - Log odds 7 EUR 23563609 

Rosacea 73265 - - SD 5 EUR 29771307 

Telomere length 9190 - 0.65 Kilobase pair 8 EUR 23001564 

Triglycerides 188577 - - SD 93 EUR 24097068 

Type 1 diabetes 9934 16956 - Log odds 3 Cauca
sian  

21980299 

Type 2 diabetes 3871 16427 - Log odds  37 EUR 28869590 
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Vascular endothelial growth 
factor levels 

16112 - - Natural log 
transformed  

7 EUR 26910538 

Vitamin A levels 5006 - - Natural log 
transformed  

2 Cauca
sian  

21878437 

Vitamin D levels 39655 - - SD 5 EUR 28757204 

Vitamin E levels 7781 - 5.06 mg/L 2 EUR 21729881 

Table 3-2- Details of risk factors with genetic proxies available found from the systematic search of the literature. SD; 
standard deviation provided by the paper. Pop, population of the study participants. EA, East Asian.  

To undertake the MR analysis, the following parameters were gathered from the summary 

results: the regression coefficient (e.g., beta or log odds ratio) quantifying the association of each SNP 

with the exposure of interest from an additive genetic model; the standard error of the regression 

coefficient; the effect allele; non-effect allele; and the effect allele frequency. The effect allele was the 

allele that was related to an increased odds/level of the exposure.  

To instrument allergic disease, a shared genetic instrument was utilised that captured broad 

allergic disease by considering the presence of asthma, hay fever or eczema [386]. I chose to 

instrument allergic disease using a shared genetic instrument due to a shared genetic origin that 

results in the coexistence of these atopic disorders [387-389].  

To compare MR estimates for the different risk factors, the regression coefficient for 

continuous risk factors that were not given in SD units, were converted into SD units by dividing the 

beta and se by the value of the SD reported in the paper.  

3.3.4 F-statistic to test the “relevance” assumption.  

For MR to give a reliable effect estimate the three IV assumptions need to hold. To test the 

first IV assumption, the F-statistic was calculated, an F-statistic > 10 indicates that weak instrument 

bias is unlikely. [390].  

3.3.5 Genetic associations of glioma via genome wide association studies meta-analysis  

The second stage of the analysis involved the collection of the outcome data: i.e., the relevant 

summary genetic data from a glioma GWAS. These summary data were obtained from the principal 

investigators of the glioma GWAS consortia and relate to 5,739 cases and 5,492 controls from two 
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independent GWAS studies of European ancestry [391, 392]. To determine whether the risk factors 

differ between subtypes, summary association estimates were obtained from the histological 

subtype-stratified glioma risk in which glioma was considered as being either glioblastoma (3,112 

cases, 5,492 controls) or non-glioblastoma (2,411 cases, 5,492 controls). The GWAS information was 

provided as summary data from the two different consortia: Glioma International case-control study 

(GICC) which is comprised of 4,564 cases and 3,256 controls; and the University of Texas M.D. 

Anderson Cancer center (MDA) which included 1,175 cases and 2,236 controls. The individual GWAS 

were adjusted for sex, age and the first two principal components (to reduce the likelihood of 

confounding via population stratification). Individual studies have restricted statistical power to detect 

precise effect estimates. Thus, to gain a more complete understanding of glioma risk, I performed a 

meta-analysis of these two previously published GWAS [391, 392]. I also performed a glioblastoma 

meta-analysis and non-glioblastoma meta-analysis. GICC provided 2,460 glioblastoma cases and 3,265 

controls and MDA provided 652 glioblastoma cases and 2,236 controls. For non-glioblastoma, GICC 

comprised of 1,898 cases and 3,265 controls and MDA 513 cases and 2,236 controls. Meta-analyses 

were implemented using the fixed-effects inverse-variance method, based upon the β effect estimates 

and standard errors from each consortium using METAL (metal-2011-3-25) [393]. 

LD score regression was used to check the quality of the meta-analysis by evaluating the 

degree of genomic inflation in the glioma GWAS due to latent sources of bias [394, 395]. LD score 

regression is based upon the amount of LD between SNPs and the strength of their relationship with 

glioma as derived from GWAS. SNPs that are in high LD with neighbouring SNPs show larger test 

statistics as there is greater chance that they will tag a causal variant. LD scores were calculated from 

the meta-analysis.  

In order to gain aetiological insights, the genetic correlation between the MR top findings and 

glioma were computed and SNP heritability (the amount of variation in a trait that is attributable to 
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genetic factors [396]) for the glioma, glioblastoma and non-glioblastoma datasets was also 

calculated.  

3.3.6 Two-sample Mendelian randomization analysis  

The association of the identified risk factors, that could be proxied using genetic instruments, 

with glioma risk was systematically explored using a multiplicative random effects inverse-variance 

weighting (IVW) approach in two sample MR. Horizontal pleiotropy is a major source of bias in MR 

studies [211, 217], so to minimise this I performed sensitivity analyses using the weighted median 

estimator (WME), the mode-based estimator (MBE) and MR-Egger regression [251, 397, 398]. A 

consistent effect across the multiple methods would give the strongest evidence for a causal effect 

and suggest that the results are not biased by horizontal pleiotropy. To further assess the impact of 

horizontal pleiotropy I performed MR-Egger regression, a type of MR analysis that can quantify the 

amount of bias caused by directional pleiotropy (when the average value of the pleiotropy distribution 

is not balanced i.e., non-zero [399]) based upon the intercept from this analysis [316]. MR-Egger 

regression provides an unbiased effect-estimate even if all the SNPs are subject to horizontal 

pleiotropy, although it requires the InSIDE (instrument strength independent of direct effects) 

assumption to be valid. MR-Egger regression requires many instrumental SNPs otherwise the method 

is underpowered. Furthermore, to examine the effect of SNP outliers in the MR analysis, I undertook 

a leave-one-out analysis which removes one SNP at a time and re-calculates the association results 

[316]. To assess evidence for heterogeneity, a potential indicator of horizontal pleiotropy, I used 

Cochran’s Q statistic [400]. In cases where there was evidence for heterogeneity, results were further 

assessed through Radial plots, which provide improved visualisation of outliers [401]. 

To increase the likelihood that MR infers the correct causal direction between an exposure 

and glioma, directional (Steiger) MR was applied to test for reverse causation [402]. This calculates 

the variance explained by the SNPs that form the exposure and outcome data and compares these to 
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estimate whether the direction of effect is orientated from exposure to outcome or vice versa. All 

two-sample MR analyses were performed using the Two-Sample MR package in R [239]. 

3.3.7 Interpretation of results 

I analysed the association of 36 risk factors with glioma. I imposed a Bonferroni-corrected 

significance level to determine statistically significant results of P < 1 x 10-3 (0.05 / 36, the number of 

risk factors included in this analysis) and a suggestive threshold of 1 x 10-3 ≤ P < 0.05.  

3.3.8 Power estimation  

Post-hoc power calculations were performed based on a method provided by Burgess [247]. 

Power calculations were performed using effect estimates from the MR analysis to ascertain whether 

there was an adequate sample size to detect the MR point estimate (α assumed to be 0.05). Due to 

lack of available methods, power calculations could not be performed for continuous risk factors.  

3.3.9 Multivariable Mendelian randomization analysis  

Low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol and 

triglycerides are highly correlated traits and therefore it is likely that genetic instruments used as 

proxies associate with multiple lipid traits, violating the third IV assumption (Figure 3-3).  
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Figure 3-3 – Multivariable Mendelian randomization to adjust for the confounder/s. If the exposures are correlated, then 
the genetic variants that instrument the exposure of interest also associate with a confounder of the exposure and the 
outcome.  

As multivariable MR can adjust for these possible pleiotropic effects [335], I conducted 

multivariable MR to examine the direct effect of each lipid trait on glioma risk. For the multivariable 

analysis, I included LDL cholesterol, HDL cholesterol and triglycerides in the model to ascertain if any 

lipid trait associated with glioma or subtype risk. Instruments were formed using SNPs shown to 

robustly (P < 5x10−8) and independently (r2 < 0.001) associate with the lipid trait in individuals of 

European ancestry from a UK biobank study [403]. The LD-clumping process was performed for each 

trait in the software PLINK [404] based on a reference panel of European individuals (CEU) from phase 

3 (version 5) of the 1000 Genomes project [314]. The instrument strength for each lipid trait examined 

was estimated by the conditional F-statistic [335]. To assess evidence for heterogeneity, a potential 

indicator of horizontal pleiotropy, I examined the heterogeneity statistic. All multivariable analyses 

were performed using “MVMR” package in R [405].  

3.3.10 Interpretation of the Mendelian randomization estimate  

MR results are reported as odds ratios (OR) (95% confidence intervals (CI)) per 1 standard 

deviation (SD) change in each genetically proxied risk factor. For the binary risk factors, the log odds 
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were converted (by multiplying the log odds and 95% CI by 0.693 and then exponentiating the product) 

to represent the OR per doubling in the odds of the risk factor [406].  

3.3.11 Polygenic risk score analysis to improve statistical power. 

Polygenic risk scores (PRS) can be used to assess putative associations [407, 408]. PRS use a 

less stringent P value threshold for inclusion of SNPs (P < 1× 10−5) and thus they can increase the power 

as they capture more trait variance due to a greater number of genetic instruments being included. 

However, they assume no horizontal pleiotropy and thus are more susceptible to false positive 

associations [409]. The PRS is equivalent to an MR analysis using a fixed effects IVW model. To assess 

if MR associations were consistent with a PRS model I applied BADGERS (Biobank-wide Association 

Discovery using Genetic Risk Scores) to examine associations between the risk factors, using the same 

full GWAS summary data used in the MR analysis when the data was available (when it was not I used 

an alternative study [Table 3-3]), and glioma onset using GWAS summary statistics [336]. Full GWAS 

summary statistics were unavailable for Insulin-like growth factor binding protein-3 and Insulin-like 

growth factor-1. 
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Risk factor  No of 
participants 
if 
continuous 
or No. cases 
if binary 

No. 
controls 

SD Units  No. of SNPs 
by IVW 

Pop. PubMed ID 

Alcohol Consumption 112117 - - SD proxy 69 EUR 28937693 

Allergic disease 180129 180709   Log 
odds 

174 EUR 29083406 

Alzheimer’s  25580 48466 - Log odds 51 EUR 24162737 

Birth weight 142677 - - SD 180 EUR 27680694 

Body mass index 681275 - - SD  736 EUR 30124842 

Breast Cancer 228951 122977 - Log odds  288 EUR  29059683 

Caffeine consumption 
(drink within last hour) 

8991 415882  - Log odds 16 EUR Output 
from GWAS 
pipeline 
using 
Phesant 
derived 
variables 
from 
UKBiobank 

Cannabis use 25698  - - 
 

22 EUR NA 

Coffee consumption 45788 19161  - Log odds 31 EUR Output 
from GWAS 
pipeline 
using 
Phesant 
derived 
variables 
from 
UKBiobank 

Compound smoking 
index 

462690   0.69  SD 336 EUR doi: 
https://doi.
org/10.1101
/381301 

College completion 20044 - - Log odds 53 EUR 23722424 

Educational attainment 
(years of education) 

293723 - - SD (Years) 248 EUR 27225129 

Eosinophil count 173480 - - SD 299 EUR 27863252 

Epilepsy  15212 29677 - Log odds 75 Mixed  30531953 

Food allergy 2090 460843 - Log odds 6 EUR Output 
from GWAS 
pipeline 
using 
Phesant 
derived 
variables 
from 
UKBiobank 

Height 336474 - - SD  822 EUR 
 

High density lipoprotein 
cholesterol  

188577 - - SD 142 EUR 24097068 

Hypertension 1237 359957 - Log odds 32 EUR NA 

Immunoglobulin E  1000 - - Grams per 
litre  

14 EUR 30053915 

Iron levels 23986 - - SD 17 EUR 25352340 
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Low density lipoprotein 
cholesterol  

188577 - - SD 122 EUR 24097068 

Melanoma  3751 372016 - Absolute 
risk 

45 EUR Doi: 
10.5523/bri
s.aed0u12w
0ede20olb0
m77p4b9 

Menarche (age at 
onset) 

182416 - 1.43 Years 164 EUR 25231870 

Menopause (age at 
onset) 

6930 
 

3.93 Years  102 EUR 26414677 

Obesity (early onset)  5530 8318 - Log odds  EUR 22484627 

Rosacea 1195 - - 
 

22 EUR 29771307 

Telomere length 9190 - 0.65 Kilobase 
pair 

36 EUR 23001564 

Triglycerides 188577 - - SD 109 EUR 24097068 

Type 1 diabetes 6683 12173 - Log odds 64 EUR 25751624 

Type 2 diabetes 61714 1178 - Log odds  251 EUR 30054458 

Vascular endothelial 
growth factor levels 

7118 - - SD 23 EUR 28240269 

Vitamin A levels 6173 329418 - SD 25 EUR Output 
from GWAS 
pipeline 
using 
Phesant 
derived 
variables 
from 
UKBiobank 

Vitamin D levels 17879 460351 - SD 27 EUR Output 
from GWAS 
pipeline 
using 
Phesant 
derived 
variables 
from 
UKBiobank 

Vitamin E levels 13548 446803 - SD 22 EUR Output 
from GWAS 
pipeline 
using 
Phesant 
derived 
variables 
from 
UKBiobank 

Table 3-3 - Details of risk factors used to construct polygenic risk scores. SD; standard deviation. Pop, population of study 
participants.  

 
PRS were derived using independent SNPs for each GWAS (P < 1× 10−5) based on r2< 0.001 

using genotype data from European individuals (CEU) from phase 3 (version 5) of the 1000 Genomes 

project [314]. PRS were constructed using the risk factor GWAS data and the glioma, glioblastoma, 

and non-glioblastoma meta-analysis as the outcome.  
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3.3.12 Interpreting the polygenic risk score estimate 

The units of the PRS are determined by the units of the GWAS (given in Table 3-3). For risk 

factors given in SD units the Z-score effect sizes are reported per SD increase in PRS.   
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3.4 Results  

3.4.1 Risk factor selection 

There were 36 unique risk factors that had suitable genetic instruments available for MR. 

Figure 3-4 summarizes the screening process which resulted in the inclusion of 25 studies (Table 3-4) 

investigating 36 risk factors.  

 

Figure 3-4 – Flow diagram of the risk factor inclusion 
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PubMed ID Risk Factor Year 

30160152 Breast Cancer 2018 

24703682 Melanoma 2014 

22531415 Alzheimer’s 2012 

26818473 Rosacea 2016 

26683358 Type 1 diabetes and Type 2 diabetes 2016 

29943102 Body mass index and Height  2018 

28219020 Birth weight 2017 

25135427 Menopause (age at onset) and Menarche (age at onset) 2014 

22179083 Hypertension, Cholesterol and Triglycerides  2012 

27366088 Smoking 2016 

20565525 Cannabis  2010 

24473233 Alcohol Consumption 2014 

20670977 Educational attainment  2010 

23247638 Caffeine consumption 2013 

20570910 Vitamin E levels 2010 

27845960 Iron levels 2018 

26317248 Vitamin D 2015 

26516909 Vitamin A  2015 

21788435 Insulin-like growth factor-1 and Insulin-like growth factor binding protein-3  2011 

24366909 Telomere length 2014 

28594935 Vascular endothelial growth factor levels 2017 

25170669 Eosinophil count 2014 

20722711 Atopy 2011 

15767344 Epilepsy  2005 

26908595 Food allergy 2016 

Table 3-4 - Details of the 25 studies from which the 36 risk factors were evidenced. 

Table 3-5 summarizes all the risk factors that were identified in the systematic search before 

exclusion due to lack of available genetic proxies for MR. Appendix 1.2 provides information on the 

170 studies that were identified in the systematic review, that report an association between an 

instrumental risk factor and glioma.    
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1.) Age at first birth, 2.) Age at menarche, 3.) Age of diagnosis of respiratory allergies, 4.) Alcohol consumption, 5.) 
Alzheimer’s, 6.) Amiodarone, 7.) Animal/insect allergies, 8.) Anti-depressants, 9.) Antiepileptic drug, 10.) Antioxidant 
index, 11.) Arthritis, 12.) Artist, 13.) Aspirin, 14.) Asthma, 15.) Atopic dermatitis, 16.) Aviation, 17.) Beta-catenin, 18.) 
Birth length, 19.) Birth weight, 20.) Blood eosinophil counts, 21.) Blood group, 22.) Body somatotypes, 23.) Body-mass 
index, 24.) Breast cancer, 25.) Breastfeeding, 26.) Cadmium, 27.) Cannabis use, 28.) Carotenoid, 29.) CCL22, 30.) 
Chemical, 31.) Chicken pox, 32.) Chlorinated water, 33.) Chromium, 34.) Coffee, 35.) Construction, 36.) Consumption of 
processed meats, 37.) Coumestrol, 38.) COX2-inhibitors, 39.) Cured and non-cured meats, 40.) Dental X-ray, 41.) Dentist, 
42.) Dietary polyunsaturated fatty acid, 43.) Digoxin, 44.) Diltiazem, 45.) Education, 46.) Eggs/dairy, 47.) Electrical, 48.) 
Electromagnetic field, 49.) Epilepsy, 50.) Estimated glomerular filtration rate, 51.) Family history of cancer, 52.) Farming, 
53.) Fish, 54.) Food allergies, 55.) Fruit and vegetable consumption, 56.) Glucose-6-phosphate dehydrogenase 
deficiency, 57.) Glycosides, 58.) Green tea, 59.) Hair dye, 60.) Handedness, 61.) Hay fever, 62.) Head circumference, 63.) 
Head injury, 64.) Height, 65.) Herbicides, 66.) high-density lipoprotein cholesterol, 67.) History of any allergy, 68.) 
Hormone replacement therapy, 69.) Hypertension, 70.) Hysterectomy, 71.) Ibuprofen, 72.) Immunoglobulin E levels, 73.) 
Immunoglobulin G antibodies, 74.) Income, 75.) Insecticides, 76.) Insulin-like growth factor binding protein-3, 77.) 
Insulin-like growth factor-1, 78.) Intra cranial volume, 79.) Iron, 80.) Lead, 81.) Leukaemia inhibitory factor, 82.) Long-
term antihistamine use, 83.) low-density lipoprotein cholesterol, 84.) Lynch Syndrome, 85.) Magnetic field, 86.) 
Magnetic fields, 87.) Marital status, 88.) Matairesinol, 89.) Medical intervention (cochlear implant patients), 90.) 
Medication allergies, 91.) Melanoma, 92.) Meningitis, 93.) Menopause, 94.) Metabolites, 95.) Methylene chloride, 96.) 
Mobile phones, 97.) Neurocysticercosis, 98.) Nickel, 99.) Nitrate, 100.) Nitrite, 101.) Non-steroidal anti-inflammatory 
drugs, 102.) Obesity, 103.) Parity, 104.) Pesticides, 105.) Petrochemical exposure, 106.) Physical activity, 107.) Polio 
vaccination, 108.) positive penicillin skin tests (PenSTs), 109.) Pre-diagnostic weight loss, 110.) Pulp and paper, 111.) 
Radiation, 112.) Respiratory allergies, 113.) Rosacea, 114.) Secoisolariciresinol, 115.) sIL10RB, 116.) Smoking, 117.) 
Soap/cosmetics allergies, 118.) Statin use, 119.) Synthetic rubber, 120.) Tea, 121.) Telomere length, 122.) Toenail 
selenium, 123.) Total meat intake, 124.) Transport, 125.) Triglycerides, 126.) Tylenol, 127.) Type 1 diabetes, 128.) Type 2 
diabetes, 129.) Underweight, 130.) Unprocessed red meat intake, 131.) Vascular endothelial growth factor levels, 132.) 
Vegetables, 133.) Verapamil, 134.) Vitamin C, 135.) Vitamin D, 136.) Vitamin E, 137.) Waist circumference, 138.) 
Welding, 139.) Years since last birth, 140.) Oral contraceptive. 

Table 3-5 - The systematically identified glioma risk factors. 

3.4.2 Genetic architecture of glioma  

Univariate LD score regression suggested that the 1,201,423 common variants included in the 

meta-analysis explained 2.6% of the phenotypic variance of glioma risk (H2=0.0257, S.E.= 0.0425); 

1,201,269 SNPs explained 1.1% of the phenotypic variance of glioblastoma risk (H2=0.0115, S.E.= 

0.0537); and 1,201,154 SNPs explained 9.2% of the phenotypic variance of non-glioblastoma risk 

(H2=0.0928, S.E.= 0.0599). Due to the limited sample size, genetic correlation between glioblastoma 

and non-glioblastoma tumours could not be estimated. 

For the GWAS meta-analysis, there was little evidence to suggest inflation of results for glioma, 

glioblastoma, and non-glioblastoma. The genomic inflation factor λGC was 1.0345 and the LD score 

regression intercept 1.045 for glioma; λGC was 1.0315 and the LD score regression intercept 1.0398 

for glioblastoma; and λGC was 1.0165 and the LD score regression intercept 1.0133 for non-

glioblastoma.    
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3.4.3 Detecting weak instrument bias  

The F-statistic for each SNP used as an instrumental variable is given in Appendix 1.3.  1013 

out of 8922 SNPs used an instrumental variable had an F-statistic of <10. To improve statistic power 

by increasing the number of SNPs and therefore explaining more of the variance in each risk factor, 

these SNPs were not excluded from this analysis, but weak instrument bias is an issue to be considered 

in this analysis.  

3.4.4 Two-sample Mendelian randomization to investigate putative associations with glioma. 

Full results for the IVW MR analysis of putative risk factors with glioma risk are presented in 

Figure 3-5. MR provided suggestive evidence (1x10-3 ≤ P < 0.05) that a genetically proxied increase in 

telomere length increased the risk of glioma (OR per 1 SD increase 4.09, 95% CI 1.13-14.86, p = 0.032) 

and that genetically proxied childhood obesity increased the risk of glioma (OR per doubling in odds 

of childhood obesity 1.11, 95% CI 1.02-1.21, p = 0.016). In this MR analysis, where 4 SNPs were used 

to instrument alcohol consumption, I observed a positive association between genetically proxied 

alcohol consumption and glioma risk (OR 4.42, 95% CI 1.07-18.30, p = 0.04).    
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Figure 3-5 - Inverse-variance weighted estimates for the association between genetically proxied increased risk factors 
and odds of glioma. MR results are reported as odds ratios (OR) (95% confidence intervals (CI)) per 1 standard deviation (SD) 
change in each genetically proxied risk factor. For the binary risk factors, the log odds were converted (by multiplying the log 
odds and 95% CI by 0.693 and then exponentiating the product) to represent the OR per doubling in the odds of the risk factor 
[406]. LDLc refers to low density lipoprotein cholesterol and HDLc to high density lipoprotein cholesterol. The ‘compound 
smoking index’ measure, combines multiple smoking behaviours (smoking initiation, smoking duration, smoking heaviness, 
and smoking cessation). 
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The results from the IVW MR analyses of the genetically proxied risk factors with glioblastoma 

risk are shown in Figure 3-6.  There was suggestive evidence (1x10-3 ≤ P < 0.05) of an association 

between: genetically proxied alcohol consumption with an increase in glioblastoma risk (OR 8.37, 95% 

CI 1.69-41.54, p = 0.009); an increase in a genetic liability for allergic disease with an increased risk of 

glioblastoma  (OR 1.31, 95% CI 1.01-1.70, p = 0.042); and genetically proxied childhood obesity with 

an increased risk of glioblastoma (OR 1.14, 95% CI 1.01-1.28, p = 0.036). 
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Figure 3-6 - Inverse-variance weighted estimates for the association between genetically increased risk factors and odds 
of glioblastoma. MR results are reported as odds ratios (OR) (95% confidence intervals (CI)) per 1 standard deviation (SD) 
change in each genetically proxied risk factor. For the binary risk factors, the log odds were converted (by multiplying the log 
odds and 95% CI by 0.693 and then exponentiating the product) to represent the OR per doubling in the odds of the risk factor 
[406]. LDLc refers to low density lipoprotein cholesterol and HDLc to high density lipoprotein cholesterol. The ‘compound 
smoking index’ measure, combines multiple smoking behaviours (smoking initiation, smoking duration, smoking heaviness, 
and smoking cessation). 
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The results from the IVW MR analyses of the 36 risk factors with non-glioblastoma are shown 

in Figure 3-7.  For non-glioblastoma, the IVW MR estimate met the Bonferroni-corrected significance 

level (P < 1x10-3) for the association between genetically proxied increase in telomere length with an 

increase in non-glioblastoma risk (OR 4.05, 95% CI 1.72-9.56, p = 0.001). There was suggestive 

evidence (1x10-3 ≤ P < 0.05) that increased levels of genetically proxied LDLc (OR 0.79, 95% CI 0.63-

0.99, p = 0.04) and triglycerides (OR 0.77, 95% CI 0.59-1.00, p = 0.049) were associated with a reduced 

risk of non-glioblastoma. 
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Figure 3-7 - Inverse-variance weighted estimates for the association between genetically increased risk factors and odds 
of non-glioblastoma. MR results are reported as odds ratios (OR) (95% confidence intervals (CI)) per 1 standard deviation 

(SD) change in each genetically proxied risk factor. For the binary risk factors, the log odds were converted (by multiplying 

the log odds and 95% CI by 0.693 and then exponentiating the product) to represent the OR per doubling in the odds of the 

risk factor [406]. LDLc refers to low density lipoprotein cholesterol and HDLc to high density lipoprotein cholesterol. The 



 

101 
 

‘compound smoking index’ measure, combines multiple smoking behaviours (smoking initiation, smoking duration, smoking 
heaviness, and smoking cessation). 

A list of risk factors that met at least the suggestive p-value threshold for overall glioma and 

histological stratified risk are given in Table 3-6. In short, only the association between genetically 

proxied telomere length with non-glioblastoma risk met the strict p-value threshold of 0.001. For the 

other 35 putative risk factors, 6 met the weaker p-value threshold for suggestive evidence (1x10-3 ≤ P 

< 0.05): telomere length (risk factor for glioma), alcohol consumption (risk factor for all glioma and 

glioblastoma), childhood extreme obesity (risk factor for all glioma and glioblastoma), LDLc levels 

(protective factor for non-glioblastoma), allergic disease (risk factor for glioblastoma) and triglycerides 

levels (protective factor for non-glioblastoma). 

Risk Factor Subtype OR 95% CI p-value 

Telomere length All glioma 4.09 1.13 to 14.86 3.24x10-2 

Telomere length Non-glioblastoma 4.05 1.72 to 9.56 1.38x10-3 

Alcohol consumption All glioma 4.42 1.07 to 18.30 4.05x10-2 

Alcohol consumption Glioblastoma 8.37 1.69 to 41.54 9.36x10-3 

Allergic disease Glioblastoma 1.29 1.01 to 1.67 4.76x10-2 

Obesity (childhood 
extreme) 

All glioma 1.11 1.02 to 1.21 1.63x10-2 

Obesity (childhood 
extreme) 

Glioblastoma 1.12 1.02 to 1.22 2.07x10-2 

Low-density lipoprotein  Non- glioblastoma 0.79 0.63 to 0.99 3.99x10-2 

Triglycerides Non-glioblastoma 0.77 0.59 to 1.00 4.86x10-2 

Table 3-6 - The IVW estimates for the risk factors that met the p-value threshold for suggestive evidence. OR, odds ratio; 
CI, confidence intervals. 

3.4.5 Power calculations  

Using the MR estimates generated in the two-sample MR analysis and the sample size of each 

exposure GWAS, power calculations obtained >80% power for alcohol consumption, body mass index, 

educational attainment (years of education), HDL cholesterol, hypertension, menarche, and telomere 

length. For all other risk factors examined the power was either less than 80% or could not be 

computed (Table 3-7). Therefore, the ability to detect associations by the use of MR may be biased by 

low statistical power. Power calculations suggested that variation in the risk factor explained by the 

genetic variants ranged from 0.07% for vitamin E levels to 42.77% for breast cancer. 
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Risk Factor  Variance Statistical 
Power 

Percentage of variance explained 
by the SNPs used as IVs 

Alcohol consumption 0 >0.9 0.09 

Alzheimer's disease NA NA NA 

Allergic disease 0.1 NA 10.03 

Birth weight 0.02 0.03 1.96 

Body mass index 0.06 >0.9 5.81 

Breast cancer 0.43 NA 42.77 

Caffeine consumption 0.02 0 1.68 

Cannabis use 0.01 NA 1.07 

Coffee consumption 0.01 0 0.55 

Compound smoking index 0.01 NA 1.09 

Educational attainment (college completion) 0.02 0 2.04 

Educational attainment (years of education) 0.01 0.95 0.83 

Eosinophil count, Basophil count 0.08 0 8.18 

Epilepsy 0.03 NA 3.25 

Food allergy measurement 0.2 NA 20.12 

High-density lipoprotein  0.08 0.97 7.84 

Height 0.22 0.32 21.81 

Hypertension 0.02 0.98 2.39 

Immunoglobulin E levels 0.01 0 0.89 

Insulin-growth factor 1 0.02 0.59 1.54 

Insulin-growth factor binding-protein 3 0.07 0.01 6.72 

Iron NA NA NA 

Low-density lipoprotein  0.07 0.03 7.1 

Melanoma 0.21 NA 21.05 

Menarche (age at onset) 0.03 >0.9 3.18 

Menopause (age at onset) 0.01 0 0.66 

Obesity (early onset extreme) 0.23 NA 22.84 

Rosacea severity measurement 0.06 0.03 6.16 

Telomere length 0.01 1 0.88 

Triglycerides 0.07 0.76 6.83 

Type 1 diabetes 0.04 NA 3.74 

Type 2 diabetes 0.14 NA 13.79 

Vascular endothelial growth factor levels 0.25 0.03 25.22 

Vitamin A measurement 0 0 0.08 

Vitamin D measurement 0.02 0.34 1.67 

Vitamin E levels 0 0.03 0.07 

Table 3-7 - Power calculations. These were based on Mendelian randomization estimates and risk factor genome wide 
association study sample size. 
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3.4.6 Sensitivity analyses of Mendelian randomization findings to assess violations of the 
instrumental variable assumptions. 

Risk factors that met at least the suggestive P-value threshold and were associated with any 

subtype were eligible for follow up sensitivity analyses.  

To detect the presence of horizontal pleiotropy, i.e., where the genetic variants used to proxy 

the risk factors are associated with multiple traits which independently influence the outcome, 

violating the “exclusion restriction” assumption (third IV assumption) (Figure 3-8), MR-Egger was 

applied. If the MR-Egger intercept differs from zero, this indicates directional pleiotropy or violation 

of the InSIDE assumption and hence indicates the IVW estimate is biased.  

 

Figure 3-8 – Horizontal pleiotropy. Occurs when genetic variants used as instruments associated with multiple exposures 
that associate with the outcome through a pathway that is not though the exposure of interest.  

The results from the MR-Egger analysis (Table 3-8) did not reach the threshold of statistical 

significance (p-value < 0.001). The MR-Egger intercept test did not highlight the presence of pleiotropy 

for any risk factor that showed evidence of an association with overall glioma or histological stratified 

risk. The MR-Egger analysis for genetically proxied alcohol consumption with overall glioma and 

glioblastoma risk has large confidence intervals. This may be due to a lack of power, as only four SNPs 

were used as a proxy for alcohol consumption, which explained a small amount of variation (0.09%).  
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                                              MR Egger MR Egger intercept 

Risk factor Subtype Odds 
ratio 

Lower 
CI 

Upper CI p-value Intercept se p-value 

Alcohol 
consumption 

All Glioma 499.38 0.05 4596308.86 3.14E-01 0.11 0.11 0.420 

Alcohol 
consumption 

Glioblastoma 145.77 0.00 4265331.30 4.43E-01 -0.07 0.13 0.636 

Allergic disease Glioblastoma 0.97 0.49 1.91 9.22E-01 0.02 0.02 0.406 

Low-density 
lipoprotein  

Non- 
glioblastoma 

0.79 0.60 1.05 1.06E-01 0.01 0.008 0.205 

Obesity (early 
onset extreme) 

All Glioma 0.88 0.69 1.12 3.13E-01 -0.01 0.11 0.906 

Obesity (early 
onset extreme) 

Glioblastoma 0.87 0.66 1.14 3.30E-01 -0.06 0.13 0.683 

Telomere 
length 

All Glioma 3.28 0.04 239.24 6.04E-01 0.03 0.03 0.289 

Telomere 
length 

Non- 
glioblastoma 

11.30 0.74 173.02 1.25E-01 0.07 0.03 0.092 

Triglycerides Non- 
glioblastoma 

0.65 0.46 0.91 1.28E-02 -0.02 0.01 0.140 

Table 3-8 - Results from the MR-Egger sensitivity analysis. CI; confidence intervals; se, standard error. 

To allow relaxation of IV3 by adjusting based on outlying variants I used the MBE and WME 

(Table 3-9). The results from the MBE and WME methods were compared against the IVW. The 

Bonferroni corrected p-value threshold was met in the case of genetically proxied telomere length 

with non-glioblastoma risk. 
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Risk factor Subtype WME MBE 

  Odds 
ratio 

Lower 
CI 

Upper 
CI 

p-value Odds 
ratio 

Lower 
CI 

Upper 
CI 

p-value 

Alcohol 
consumption 

All Glioma 5.31 1.12 25.23 3.57E-02 5.24 0.86 31.77 1.70E-
01 

Alcohol 
consumption 

Glioblastoma 7.75 1.19 50.40 3.20E-02 5.61 0.60 52.18 2.27E-
01 

Allergic disease Glioblastoma 1.06 0.80 1.40 6.96E-01 0.94 0.51 1.73 8.48E-
01 

Low-density 
lipoprotein  

Non- 
glioblastoma 

0.88 0.62 1.25 4.76E-01 0.96 0.08 11.29 9.72E-
01 

Obesity (early onset 
extreme) 

All Glioma 1.11 1.00 1.25 5.63E-02 1.14 0.95 1.36 1.83E-
01 

Obesity (early onset 
extreme) 

Glioblastoma 1.11 0.98 1.26 1.11E-01 1.13 0.95 1.33 1.86E-
01 

Telomere length All Glioma 2.31 1.15 4.64 1.83E-02 2.13 1.06 4.27 6.74E-
02 

Telomere length Non- 
glioblastoma 

4.19 1.73 10.15 1.49E-03 3.11 1.29 7.52 3.59E-
02 

Triglycerides Non- 
glioblastoma 

0.68 0.46 1.01 5.51E-02 0.55 0.13 2.44 4.36E-
01 

Table 3-9 - Results from the Weighted median estimate (WME) and the mode-based estimate (MBE). 

To further investigate the effect of outliers on the MR estimate I used radial IVW to construct 

radial IVW regression estimates and lists of outlier SNPs with high heterogeneity. Only three 

associations could be tested this way as a minimum of 10 SNPs is required (Table 3-10): genetically 

proxied LDLc with non-glioblastoma risk, which included the null; genetic liability to allergic disease 

with glioblastoma risk, which agreed with the IVW result; and genetically proxied triglycerides with 

non-glioblastoma risk, which included the null.  

  
Radial IVW 

Risk factor Subtype Odds ratio Lower CI Upper CI p-value Outliers 

Alcohol consumption All Glioma NA NA NA NA NA 

Alcohol consumption Glioblastoma NA NA NA NA NA 

Allergic disease Glioblastoma 1.30 1.01 1.67 0.04 1 

Low-density lipoprotein  Non-glioblastoma 0.83 0.67 1.03 0.09 0 

Obesity (early onset extreme) All Glioma NA NA NA NA NA 

Obesity (early onset extreme) Glioblastoma NA NA NA NA NA 

Telomere length All Glioma NA NA NA NA NA 

Telomere length Non-glioblastoma NA NA NA NA NA 

Triglycerides Non-glioblastoma 0.80 0.61 1.03 0.08 0 

Table 3-10 - Estimates from the radial inverse variance weighted (IVW) estimates. CI: confidence intervals. 

I performed Cochran’s Q test on the instruments to test for heterogeneity. This test indicated 

heterogeneity was present in the allergic disease-glioblastoma association (Q = 185.58, P = 1.86x10-9) 
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which could suggest a violation of the third MR assumption (SNPs are only associated with the 

outcome through their effect on the exposure). The results are presented in Table 3-11.  

  
MR Egger Heterogeneity 

Risk factor Subtype Q Q (df) Q (P) 

Alcohol consumption All Glioma 0.05 2 9.75E-01 

Alcohol consumption Glioblastoma 0.43 2 8.08E-01 

Allergic disease Glioblastoma 185.58 85 1.86E-09 

Low-density lipoprotein  Non-glioblastoma 76.71 78 5.20E-01 

Obesity (early onset extreme) All Glioma 5.19 4 2.68E-01 

Obesity (early onset extreme) Glioblastoma 2.56 4 6.34E-01 

Telomere length All Glioma 63.72 12 4.70E-09 

Telomere length Non-glioblastoma 14.69 7 0.0401 

Triglycerides Non-glioblastoma 77.49 70 2.52E-01 

Table 3-11 - Results from the MR Egger heterogeneity test. Q: Cochran’s Q; df: degrees of freedom; and P: p-value. 

A directionality (Steiger) test was also implemented to estimate the orientation of the 

direction of effect. In brief, all the associations that met at least the suggestive threshold showed the 

correct orientation of effect (i.e., from exposure to outcome) (Table 3-12). 

  
Directionality (Steiger) Test 

Risk factor Subtype Exposure r2 Outcome r2 Direction p-value 

Alcohol consumption All Glioma 0.00305 4.72E-04 TRUE 7.08E-04 

Alcohol consumption Glioblastoma 0.00305 6.67E-04 TRUE 2.96E-03 

Allergic disease Glioblastoma 0.0339 1.75E-02 TRUE 4.09E-08 

Low-density lipoprotein  Non-glioblastoma 0.0700 7.22E-03 TRUE 1.06E-81 

Obesity (early onset 
extreme) 

All Glioma 0.255 1.21E-03 TRUE 1.58E-80 

Obesity (early onset 
extreme) 

Glioblastoma 0.255 7.62E-04 TRUE 1.01E-82 

Telomere length All Glioma 0.00344 1.07E-05 TRUE 8.06E-05 

Telomere length Non-glioblastoma 0.00344 4.44E-05 TRUE 2.14E-04 

Triglycerides Non-glioblastoma 0.0768 7.37E-03 TRUE 6.89E-93 

Table 3-12 - Results from the MR Steiger test. R2 indicates the variance explained. Direction indicates whether the correct 
direction of effect was inferred (risk factor to glioma).  

Figure 3-9 provides a summary of the results obtained from each sensitivity analysis for each 

risk factor that met at least the suggestive p-value threshold in the MR analysis.  
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Figure 3-9 - Inverse-variance weighted and sensitivity estimates for the association between genetically increased risk 
factors and odds of glioma and subtype risk. MR results are reported as odds ratios (OR) (95% confidence intervals (CI)) per 
1 standard deviation (SD) change in each genetically proxied risk factor. For the binary risk factors, the log odds were 
converted (by multiplying the log odds and 95% CI by 0.693 and then exponentiating the product) to represent the OR per 
doubling in the odds of the risk factor [406]. LDLc refers to low density lipoprotein cholesterol. WME refers to the weighted 
median estimate and MBE refers to the mode-based estimate. 
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3.4.7 Association between lipids and glioma  

In the multivariable model, I found little to suggest a causal relationship of any of the lipid 

traits with glioma or subtype risk (Figure 310). The F-statistic for each lipid trait examined is given in 

Figure 3-10. As all lipid traits had an F-statistic >10 weak instrument bias is less likely to influence the 

IVW estimate.   

 

Figure 3-10 - MR estimates derived using the multivariable inverse variance approach. HDLc, high-density lipoprotein; LDLc, 
low-density lipoprotein; OR, odds ratio of disease; 95% CI, 95% confidence intervals. 

3.4.8 Polygenic risk score associations 

To assess if the MR estimates obtained are consistent with other IV methods when genetic 

instruments are selected using a more lenient threshold, I created PRS. The p-value threshold for 

inclusion was 0.0001. In agreement with the MR findings, PRS indicated suggestive evidence of an 

association between genetic liability to allergic disease with glioma (Z-score: 2.48 log odds; 95% CI 

[2.16 - 2.8]; p-value 0.013). However, there was little evidence to suggest an association between 

alcohol consumption (Z-score: -0.27 SD; 95% CI [-0.04 - -0.49]; p-value 0.791), telomere length (Z-score: 

1.14 kilobase pairs; 95% CI [1.14 - 1.15]; p-value 0.252), LDL cholesterol (Z-score: 0.26 SD; 95% CI [0.24 

- 0.27]; p-value 0.799), triglycerides (Z-score: -0.77 SD; 95% CI [-0.56 - -0.98]; p-value 0.441), or 

childhood obesity (Z-score: 0.79 log odds SD; 95% CI [0.71 - 0.87]; p-value 0.431) with glioma risk.  
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PRS found suggestive evidence that a further three risk factors were associated with glioma 

risk: Alzheimer’s (Z-score: 2.51 log odds; 95% CI [2.37 - 2.64]; p-value 0.012); eosinophil count (Z-score: 

-2.81 SD; 95% CI [-2.38 - -3.23]; p-value 0.005); and epilepsy (Z-score: -2.14 SD; 95% CI [-1.71 - -2.58]; 

p-value 0.032). All other exposures did not meet the significance threshold. Full results are given in 

Table 3-13. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

110 
 

Risk factor  Z-score 95% CI p-value 

Alcohol Consumption -0.27 (-0.04 - -0.49) 0.791 

Allergic disease 2.48 (2.16 - 2.8) 0.013 

Alzheimer’s  2.51 (2.37 - 2.64) 0.012 

Birth weight -0.08 (-0.06 - -0.09) 0.939 

Body mass index 1.95 (1.63 - 2.26) 0.052 

Breast Cancer 1.83 (1.7 - 1.96) 0.067 

Caffeine consumption (drink within last hour) -1.41 (17.65 - -20.48) 0.157 

Cannabis use -0.91 (-0.46 - -1.36) 0.363 

Coffee consumption -0.24 (-0.03 - -0.45) 0.810 

College completion 0.61 (0.52 - 0.7) 0.544 

Compound smoking index -0.89 (-0.88 - -0.89) 0.376 

Educational attainment (years of education) -1.23 (-0.84 - -1.63) 0.217 

Eosinophil count -2.81 (-2.38 - -3.23) 0.005 

Epilepsy  -2.14 (-1.71 - -2.58) 0.032 

Food allergy -1.62 (65.89 - -69.13) 0.105 

Height -1.99 (-1.73 - -2.26) 0.046 

High density lipoprotein cholesterol  -0.13 (-0.05 - -0.2) 0.899 

Hypertension -1.86 (40.82 - -44.55) 0.063 

Immunoglobulin E  0.71 (0.73 - 0.68) 0.480 

Iron levels -0.10 (-0.08 - -0.11) 0.922 

Low density lipoprotein cholesterol  0.26 (0.24 - 0.27) 0.799 

Melanoma  1.04 (-5.45 - 7.54) 0.298 

Menarche (age at onset) 1.71 (1.46 - 1.95) 0.088 

Menopause (age at onset) 0.66 (0.64 - 0.69) 0.507 

Obesity (early onset)  0.79 (0.71 - 0.87) 0.431 

Rosacea 0.33 (0.32 - 0.34) 0.744 

Telomere length 1.14 (1.14 - 1.15) 0.252 

Triglycerides -0.77 (-0.56 - -0.98) 0.441 

Type 1 diabetes -1.41 (-1.32 - -1.49) 0.160 

Type 2 diabetes -0.24 (-0.21 - -0.27) 0.808 

Vascular endothelial growth factor levels 0.60 (0.50 – 0.71) 0.546 

Vitamin A  -1.62 (14.96 - -18.21) 0.104 

Vitamin D 0.85 (-8.19 - 9.9) 0.393 

Vitamin E levels -0.97 (5.57 - -7.52) 0.331 

Table 3-13 - Polygenic risk scores for each risk factor and all glioma. 

For glioblastoma, in agreement with the MR findings, using PRS I observed suggestive 

evidence that genetic liability to allergic disease was associated with an increased risk of glioblastoma 

(Z-score: 2.42 log odds; 95% CI [2.08 - 2.76]; p-value 0.016). PRS found suggestive evidence of an 

association between Alzheimer’s (Z-score: 2.30 log odds; 95% CI [2.16 - 2.44]; p-value 0.021); epilepsy 

(Z-score: -2.55 SD; 95% CI [-1.99 - -3.11]; p-value 0.011); body mass index (Z-score: 1.99 log odds; 95% 
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CI [1.61 - 2.36]; p-value 0.047); and eosinophil count (Z-score: -2.90 SD; 95% CI [-2.4 - -3.4]; p-value 

0.004) with glioblastoma risk.  

Again, PRS found little to suggest an association with alcohol consumption (Z-score: 0.17 SD; 

95% CI [-0.05 – 0.28]; p-value 0.869), telomere length (Z-score: 1.65 kilobase pairs; 95% CI [1.58 - 1.73]; 

p-value 0.098), LDL cholesterol (Z-score: -0.53 SD; 95% CI [-0.43 - -0.63]; p-value 0.595), triglycerides 

(Z-score: -1.88 SD; 95% CI [-1.41 - -2.34]; p-value 0.061), or childhood obesity (Z-score: 1.11 log odds 

SD; 95% CI [0.98 - 1.23]; p-value 0.269) with glioblastoma risk. Full results are given for glioblastoma 

in Table 3-14.  
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Risk factor Z-score 95% CI p-value  

Alcohol Consumption 0.17 (0.05 - 0.28) 0.869 

Allergic  
disease 

2.42 (2.08 - 2.76) 0.016 

Alzheimer’s  2.30 (2.16 - 2.44) 0.021 

Birth weight 0.24 (0.16 - 0.32) 0.809 

Body mass index 1.99 (1.61 - 2.36) 0.047 

Breast Cancer 1.41 (1.3 - 1.51) 0.160 

Caffeine consumption (drink within last hour) -1.16 (14.33 - -16.65) 0.245 

Cannabis use -0.26 (0.01 - -0.54) 0.792 

Coffee consumption 0.46 (-0.28 - 1.19) 0.648 

College completion -0.35 (-0.25 - -0.45) 0.727 

Compound smoking index 0.06 (0.06 - 0.05) 0.956 

Educational attainment (years of education) -1.34 (-0.85 - -1.84) 0.179 

Eosinophil count -2.90 (-2.4 - -3.4) 0.004 

Epilepsy  -2.55 (-1.99 - -3.11) 0.011 

Food allergy -1.71 (78.95 - -82.37) 0.087 

Height -1.84 (-1.56 - -2.12) 0.065 

High density lipoprotein cholesterol  -0.49 (-0.34 - -0.63) 0.627 

Hypertension -0.76 (19.36 - -20.89) 0.446 

Immunoglobulin E  0.87 (0.83 - 0.91) 0.384 

Iron levels 0.29 (0.23 - 0.34) 0.775 

Low density lipoprotein cholesterol  -0.53 (-0.43 - -0.63) 0.595 

Melanoma  0.54 (1.26 - -0.18) 0.588 

Menarche (age at onset) 1.13 (0.94 - 1.31) 0.260 

Menopause (age at onset) 0.42 (0.41 - 0.43) 0.676 

Obesity (early onset)  1.11 (0.98 - 1.23) 0.269 

Rosacea 0.75 (0.7 - 0.8) 0.452 

Telomere length 1.65 (1.58 - 1.73) 0.098 

Triglycerides -1.88 (-1.41 - -2.34) 0.061 

Type 1 diabetes -1.21 (-1.14 - -1.29) 0.225 

Type 2 diabetes -0.25 (-0.22 - -0.27) 0.806 

Vascular endothelial growth factor levels 0.41 (0.28 - 0.62) 0.679 

Vitamin A  -1.28 (13.47 - -16.02) 0.202 

Vitamin D 1.22 (-10.01 - 12.45) 0.224 

Vitamin E levels -1.11 (7.46 - -9.67) 0.269 

Table 3-14 - Polygenic risk scores for each risk factor and glioblastoma. 

In the PRS model examining the association of the risk factors with non-glioblastoma, I found 

little evidence to support an association between allergic disease (Z-score: 1.49 log odds; 95% CI [1.2-

1.78]; p-value 0.136), alcohol consumption (Z-score: -1.03 SD; 95% CI [0.25--2.31]; p-value 0.303), 

telomere length (Z-score: 0.19 kilobase pairs; 95% CI [0.26-0.13]; p-value 0.846), LDL cholesterol (Z-
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score: 1.26 SD; 95% CI [1.03-1.49]; p-value 0.209), triglycerides (Z-score: 1.13 SD; 95% CI [0.88-1.37]; 

p-value 0.260), or childhood obesity (Z-score: 0.33 log odds SD; 95% CI [0.29-0.36]; p-value 0.745) with 

non-glioblastoma. 

PRS found suggestive evidence of an association between eosinophil count (Z-score: -2.06 SD; 

95% CI [-1.65--2.47]; p-value 0.039), and hypertension (Z-score: -2.62; 95% CI [75.8 - -81.04]; p-value 

0.009), with non-glioblastoma. Full results are provided in Table 3-15.  
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Risk factor Z-score 95% CI p-value 

Alcohol Consumption -1.03 (0.25--2.31) 0.303 

Allergic disease 1.49 (1.2-1.78) 0.136 

Alzheimer’s  1.17 (1.09-1.25) 0.242 

Birth weight -1.20 (-0.75--1.65) 0.231 

Body mass index 1.18 (0.95-1.4) 0.239 

Breast Cancer 1.74 (1.59-1.88) 0.083 

Caffeine consumption (drink within last hour) -0.85 (23.56--25.25) 0.398 

Cannabis use -0.95 (-0.59--1.32) 0.340 

Coffee consumption -1.15 (1.23--3.54) 0.249 

College completion 1.10 (0.78-1.43) 0.270 

Compound smoking index -1.29 (-1.28--1.3) 0.198 

Educational attainment (years of education) -0.75 (-0.44--1.06) 0.454 

Eosinophil count -2.06 (-1.65--2.47) 0.039 

Epilepsy  -0.44 (-0.2--0.69) 0.657 

Food allergy -0.75 (40.62--42.11) 0.456 

Height -1.33 (-1.12--1.55) 0.182 

High density lipoprotein cholesterol  0.03 (-0.03-0.08) 0.979 

Hypertension -2.62 (75.8--81.04) 0.009 

Immunoglobulin E  -0.06 (0.22--0.35) 0.949 

Iron levels -0.14 (-0.12--0.17) 0.887 

Low density lipoprotein cholesterol  1.26 (1.03-1.49) 0.209 

Melanoma  1.67 (-28.52-31.85) 0.096 

Menarche (age at onset) 1.72 (1.47-1.97) 0.086 

Menopause (age at onset) 0.97 (0.92-1.02) 0.331 

Obesity (early onset)  0.33 (0.29-0.36) 0.745 

Rosacea 0.15 (0.16-0.15) 0.877 

Telomere length 0.19 (0.26-0.13) 0.846 

Triglycerides 1.13 (0.88-1.37) 0.260 

Type 1 diabetes -1.53 (-1.38--1.68) 0.127 

Type 2 diabetes -0.20 (-0.14--0.27) 0.838 

Vascular endothelial growth factor levels 0.72 (0.60-0.84) 0.470 

Vitamin A  -1.61 (19.5--22.72) 0.107 

Vitamin D -0.16 (-3.27-2.95) 0.869 

Vitamin E levels 0.34 (-3.55-4.22) 0.737 

Table 3-15 - Polygenic risk scores for each risk factor and non-glioblastoma. 

3.4.9 Examining the genetic correlation using linkage disequilibrium score regression  

As neither the PRS nor the mvMR estimate, for the association between lipid traits and glioma 

risk, agreed with the univariable MR, I did not examine the genetic correlation between lipid traits and 

glioma risk. Inconclusive findings were found by MR and PRS with respect to the association between 

genetically proxied alcohol consumption, genetically proxied telomere length, genetically proxied 
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obesity and glioma risk. The association was further explored by examining the genetic correlation 

estimate using LD-score regression Table 3-16. There was little evidence to suggest a genetic 

correlation between any of the traits and glioma risk. Due to the limited sample size, genetic 

correlation between the risk factors and histological stratified risk could not be examined.  

Risk factor Genetic correlation beta (se) with glioma p-value  

Alcohol consumption  0.5903 (0.7437) 0.4274 

Telomere length 0.7841 (1.5317) 0.6087 

Childhood obesity 0.088 (0.3103) 0.7768 

Table 3-16 - Bivariate linkage disequilibrium score regression to determine the genetic correlation between alcohol 
consumption, telomere length, childhood obesity, and glioma. se, standard error. 

3.4.10 Further examination of the association between alcohol consumption and glioma risk 

The MR analysis for genetically proxied alcohol consumption with glioma risk was repeated 

using SNPs as IVs from a larger GWAS [410]. The F-statistic ranged from 25 to 144. The MR estimate 

from this secondary analysis is the odds ratio per 1 SD increase of log-transformed alcoholic grams per 

day. The IVW estimates are displayed in the forest plot (Figure 3-11). MR provided little evidence to 

suggest an association with glioma risk (OR 1.31, 95% CI 0.19-8.86, p = 0.784), glioblastoma risk (OR 

1.43, 95% CI 0.21- 9.80, p = 0.715), or non-glioblastoma risk (OR 1.68, 95% CI 0.17-16.8, p = 0.658).  

 

Figure 3-11 - Inverse-variance weighted estimates for the association between genetically increased alcohol consumption 
and odds of glioma, glioblastoma, and non-glioblastoma. 

Due to the conflicting MR findings, I conducted a sensitivity analysis using the well-known 

ADH1B SNP. Using rs1229984 to instrument alcohol consumption MR found little evidence of an 

association with glioma (OR 1.04, 95% CI 0.99-1.07, p = 0.139). 
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3.5 Discussion  

This chapter has systematically identified published hypothesised glioma risk factors and 

applied a rigorous statistical framework to investigate the associations between 36 candidate risk 

factors with glioma incidence. In agreement with the literature, MR provided robust evidence that a 

genetically proxied increase in telomere length is associated with an increase in risk of glioma and 

non-glioblastoma. 

3.5.1 Genetically proxied telomere length  

In agreement with previous MR studies and a case-control epidemiological study [222, 225, 411], 

the MR model suggests that a genetically proxied increase in telomere length is associated with an 

increase in risk of glioma and non-glioblastoma. The consistency across studies highlights the 

robustness of the MR result as evidence has been triangulated from different study designs with 

different sources of confounding. In this MR analysis telomere length was associated with an ~4.09-

fold increase (95% CI 1.13-14.86) in glioma per standard deviation increase in telomere length and 

~4.05-fold increase (95% CI 1.72-9.56) in non-glioblastoma risk. In the sensitivity analysis the MR 

estimate remained relatively similar indicating that the IV assumptions were not violated, thus the MR 

estimate is more likely to reflect a true association. The p-value met the Bonferroni corrected p-value 

threshold for the analysis for genetically proxied telomere length with non-glioblastoma risk, whereas 

for the analysis between genetically proxied telomere length with overall glioma the p-value only 

reached the threshold for suggestive evidence. This suggests that the non-glioblastoma cases were 

driving the association between telomere length and overall glioma risk. The implications of a 

genetically proxied longer telomere and glioma risk are discussed in detail in Haycock et al. (2017) 

[222]. In summary, telomere shortening is thought to act a tumour suppressor, restricting the 

proliferation of neural stem cells. Individuals with longer telomeres have cells with greater 

proliferative potential and therefore may be more likely to acquire somatic mutations [222, 412]. 

Further analysis is required to disentangle the mechanism underlying this association.  
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3.5.2 Allergic disease 

Surprisingly, the MR and PRS model both found evidence that a genetic liability to allergic 

disease increases risk of glioblastoma, contrary to previous epidemiological evidence which supports 

an inverse relation to risk [37]. Observational studies are susceptible to confounding and therefore 

establishing causality is challenging. The majority of observational studies providing evidence of an 

inverse association between allergies and glioma have been case-control studies which are liable to 

recall bias due to cognitive impairment [413]. A prospective cohort-based analysis, which provides 

stronger scientific evidence [414], did not find strong evidence that atopy protects against glioma 

[415]. Another possible explanation for the conflicting findings for the association between allergic 

disease with glioma risk is due to reverse causation in observational studies resulting in the spurious 

generation of an inverse association. This is supported by the fact that the tumour microenvironment 

in glioblastoma is known to cause immunosuppression [416] and therefore may result in a reduction 

of atopy expression in glioma patients, making it appear as if atopy protects against glioma. An 

important consideration to be made in this MR analysis, is the difference between genetic liability to 

allergic disease, which I have investigated, and actual presence of allergies, which would be commonly 

studied in observational research. An individual may be prone to an allergic disease due to their genes, 

but not develop one; conversely, environmental factors may produce allergies in those with no genetic 

liability at all. This distinction is key to make and will help further research into the true link between 

allergies and glioma risk. 

Furthermore, to limit the potential of reverse causation as an explanation for the positive 

association reported here between genetical liability to allergic disease and glioma risk, directional 

(Steiger) MR was conducted and found little evidence that glioma is driving the MR associations. 

However, the MR estimate between allergies and glioblastoma did not provide robust evidence as the 

p-value in the IVW analysis only met the threshold for suggestive evidence. Cochran’s Q suggested 

heterogeneity was present in the allergic disease-glioblastoma association (Q = 185.58, P = 1.86x10-9) 

which could suggest a violation of the third MR assumption. Additionally, in the sensitivity analysis the 
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MR estimate is only consistent by radial IVW, whereas when the IV3 assumption is relaxed to allow 

for balanced pleiotropy using WME and directionally pleiotropy using MBE and MR-Egger there was 

little to suggest an association. Therefore, on reflection the positive association between genetic 

liability to allergic disease with glioma risk is unlikely to reflect a true association as the sensitivity 

analyses suggest the IVW estimate is biased. Due to numerous observational studies reporting an 

association between allergies and glioma, further research is needed to elucidate this association.  

3.5.3 Metabolic Exposures 

In the initial IVW analysis there was suggestive evidence that three metabolic-related exposures 

were associated with glioma risk: genetically proxied childhood extreme obesity increases risk for all 

glioma and glioblastoma, genetically proxied LDLc and triglyceride levels decrease risk for non-

glioblastoma. Exposures such as these have been implicated heavily in meningioma – particularly 

obesity [417] – but within glioma their effects are less certain. In this analysis, childhood obesity was 

proxied using only 7 SNPs and therefore it was difficult to reliably assess whether the IV assumptions 

had been violated. Further sensitivity analyses are required with a greater number of SNPs to truly 

evaluate the association between childhood obesity with glioma risk.   

The MR effect estimate for the effect of genetically proxied triglycerides with non-glioblastoma 

risk is consistent across MR-Egger, WME and Radial IVW. The MR egger intercept did not differ from 

zero, indicating the IVW estimate is not biased. In addition, the MR effect estimate for the association 

of genetically proxied LDL cholesterol with non-glioblastoma risk is similar across MR-Egger and WME, 

but the p-value did not reach the threshold for suggestive evidence. As lipid traits have a high level of 

interplay, it makes disentangling causality difficult to ascertain. Therefore, I utilised multivariable MR 

to examine the direct effect of each lipid trait on glioma and subtype risk. Under the multivariable MR 

model, there was little evidence to suggest an association between any lipid trait with glioma risk. 

However, I did not have access to the full glioma GWAS summary statistics for this chapter, therefore, 

further follow-up analyses are required to truly ascertain the causal nature of lipid traits in glioma risk. 
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3.5.4 Alcohol consumption  

The role of alcohol consumption in glioma risk remains unclear despite observational cohort 

and case-control studies examining this association [418, 419]. In this analysis I failed to robustly 

demonstrate an association between alcohol consumption with glioma risk. In the initial IVW MR there 

was a ~ 4.42-fold (95% 1.07-18.30) increase in glioma risk and ~8.37-fold (95% 1.69-41.54) increase in 

glioblastoma risk per SD increase in alcohol consumption. The 4 alcohol SNPs used as IVs in the primary 

MR analysis only explained 0.1% of the variance of alcohol consumption. Therefore, the MR estimate 

was susceptible to bias if the IV assumptions were violated by one or more of the SNPs. The WME and 

MBE sensitivity analyses, that adjust for violations of the MR assumptions, provided similar MR 

estimates to the IVW (OR 5.31 and OR 5.24 for glioma risk and OR 7.75 and OR 5.61 for glioblastoma 

risk, respectively). However, due to the limited number of SNPs to proxy alcohol consumption, the 

sensitivity analysis likely provided imprecise MR estimates and therefore the robustness of the IVW 

MR estimate is uncertain. Additionally, the wide confidence intervals of the IVW estimate obtained 

reflect the underpowered nature of the analysis and the low precision of the estimate. As a sensitivity 

analysis, I repeated the MR analysis using 34 SNPs to instrument alcohol consumption and found little 

to suggest an association with glioma or subtype risk. Likewise, using the well-known ADH1B SNP, 

rs1229984, that encodes for key enzymes implicated in the metabolism of alcohol [420], MR found 

little to suggest an association with glioma risk. Using the PRS model, which captured more of the 

variance explained, there was little evidence to suggest an association between genetically proxied 

alcohol consumption with glioma risk. The inconclusive finding warrants further research, with larger 

sample sizes and additional alcohol genetic instruments, to truly uncover the nature of the association.  

3.5.5 Polygenic risk scores to assess the Mendelian randomization associations. 

The results from the PRS analysis indicated that genetic liability to Alzheimer’s disease, and a 

genetically proxied higher body mass index, are linked to an increase in the risk of glioma risk. However, 

in the MR analysis there was little evidence to suggest an association between these risk factors with 



 

120 
 

glioma risk. Similarly, under the PRS model there was some evidence that individuals with a genetically 

proxied higher eosinophil count, genetic liability to epilepsy and a genetic liability to hypertension had 

a decreased risk of developing glioma. Again, in the MR analysis these findings were not replicated. As 

a method, PRS is susceptible to a high rate of false positives due to the presence of horizontal 

pleiotropy despite increasing statistical power of complementary methods [409]. Therefore, PRS can 

be a useful IV method to assess MR estimates when the p-value threshold for inclusion is more relaxed 

but not necessarily to detect associations, as the inclusion of more instruments does not always 

equate to more power to identify associations.  

3.5.6 Strengths and limitations 

Strengths of this analysis include the systematic identification of hypothesised risk factors and 

the inclusion of 36 candidate risk factors for glioma; the inclusion of summary data for the risk factors 

from GWAS with large sample sizes (to infer reliable causal effect estimates); and the use of a two-

sample MR framework. An advantage of the MR approach is that by using germline genetics variants 

as proxies for exposures, bias caused by reverse causation is avoided as well as a reduction in bias 

caused by confounding. PRS were applied to further validate the MR estimates.  

A limitation of this analytical framework is that not all the risk factors identified in the 

systematic search could be proxied using genetic instruments and therefore their association with 

glioma could not be examined using MR. Additionally, several risk factors were proxied by less than 

10 SNPs, therefore sensitivity analyses were not able to draw robust conclusions and properly appraise 

the likelihood of the MR assumptions being violated. Additionally, MR studies assume linear 

associations, however, for some risk factors such as vitamin D, lipids and BMI, a non-linear relationship 

with glioma may exist. Thus, future MR studies should consider potential non-linear relationships to 

establish the role of these risk factors in glioma aetiology.  

Furthermore, there was a potential for false-negative findings due to the strict Bonferroni 

threshold imposed. In an attempt to retain true causal risk factors, a less conservative threshold was 
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imposed for suggestive evidence to overcome the burden of multiple testing. Conversely, MR can 

detect false positive findings in the presence of horizontal pleiotropy, where the instrument affects 

the outcome via a different pathway, bypassing the risk factor of interest, leading to a biased MR 

estimate. This type of bias is hard to address without extensive knowledge of the underlying biological 

systems and mechanisms, which are unknown in the context of glioma.  

An important limitation of this analysis is the number of potentially false-negative findings 

reported in this analysis due to the limited sample size of the glioma data and the lack of distinction 

between glioma grades in the summary data. It has been shown extensively that glioblastoma exhibits 

a different genetic profile and variation from lower grade tumours [421]. However, I still chose to 

conduct an all-glioma analysis, which included any case regardless of subtype, due to the increase in 

statistical power gained from doing so. Yet, the all-glioma analysis may bias the results reported in this 

chapter towards the null, potentially ignoring important subtype specific risk factors. To examine 

whether risk factors differed by subtype I conducted a histological stratified analysis (looking at 

glioblastoma, and non-glioblastoma). An important caveat to subtype analyses such as this is the loss 

of statistical power due to lower sample sizes in an already rare cancer. This resulted in particularly 

wide confidence intervals in the MR results and thus limited robust interpretation of the results. 

Furthermore, the granular diagnoses were not provided. It is possible that glioblastoma and low-grade 

glioma have different aetiological drivers that this analysis could not pick up due to lack of power. 

Further research with larger glioblastoma and non-glioblastoma GWAS datasets is required to 

investigate this further.  

This design assumes that the samples used to define the glioma SNPs and the SNPs used to 

proxy the risk factors are illustrative of the same population, in terms of being comparable in ethnicity, 

age and sex distribution [422]. Spurious associations may arise because of population stratification 

[215]. As all my instruments for potential risk factors and outcome (glioma) were collated from 

European populations, population stratification is made less likely but residual stratification remains 
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a possibility. Not all the risk factors examined had enough power to detect the causal estimate. To 

increase the power would require additional instruments and larger sample sizes.  

To this end, MR is a hypothesis-generating method that can guide further research to discover 

underlying mechanisms that drive the associations identified by the analysis. Whilst one of the results 

showed a robust association between the risk factor of interest with glioma risk, further studies with 

differing sources of confounding are required to accurately conclude causality. These can include in 

vitro and in vivo experiments, prospective cohort studies and other such epidemiological studies. 
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3.6 Conclusion 

In summary, by implementing a comprehensive MR study design, I corroborated previous 

studies and report a robust association between genetically proxied longer telomere length with 

increased glioma and non-glioblastoma risk. Alcohol consumption showed a large effect on glioma 

onset, OR of 4.42, when instrumented using 4 SNPs. However, this could not be replicated by MR using 

the well-known alcohol SNP, rs1229984.  Allergic disease, has repeatedly been linked to a decrease in 

risk of glioma in observational studies, as discussed in Chapter 1. Unexpectedly, there was suggestive 

evidence by IVW that allergic disease increased the risk of glioma, however, the sensitivity analyses 

indicated that the IVW estimate was likely biased and did not reflect a true association. In the 

univariable MR there was evidence of a suggestive association between LDL cholesterol and 

triglycerides with glioma risk. Once each lipid trait was adjusted for in a multivariable model, there 

was little to suggest an association between any lipid trait with glioma risk. Genetically proxied 

childhood obesity was found to increase the risk of glioma but due to the limited number of SNPs it 

was not possible to robustly appraise the presence of horizontal pleiotropy. For this analysis, power 

was a key limitation as I did not have access to the full glioma GWAS summary statistics. Therefore, 

the findings from this study warrant further research using the full glioma GWAS to truly uncover 

molecular mechanisms and intermediates (such as DNA methylation) that potentially link telomere 

length, allergic disease, alcohol consumption, and metabolic-related exposures (particularly, 

childhood extreme obesity, LDLc and triglyceride levels) with glioma onset.  

3.7 Next chapter  

It is known that aberrant DNAm contributes to the pathophysiology of glioblastoma [423] and 

the role of DNAm as a diagnostic and prognostic marker in glioma is well established [423]. 

Furthermore, it has been demonstrated in the literature that environmental factors can influence DNA 

methylation (DNAm) [424]. Chapter 4 uses genetic data to proxy DNAm to establish novel associations 

between DNAm with glioma onset. In the primary analysis, it evaluates whether DNAm influencing 

glioma onset also influences putative glioma related traits (telomere length, childhood obesity, allergic 
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disease, LDLc, triglycerides and alcohol consumption) identified in this chapter. A secondary analysis 

in Chapter 4 investigates whether DNAm mediates the effect from these putative glioma related traits 

to overall glioma and histological stratified risk. 
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Chapter 4: Role of DNA methylation in the relationship 
between glioma related traits and glioma incidence: 
A two-step Mendelian randomization study 
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4.1 Abstract  

In this chapter, the association of DNA methylation (DNAm) at 42,659 cytosine-guanine 

dinucleotides (CpG) sites with glioma risk were evaluated using a two-sample Mendelian 

randomization (MR) approach. The presence of genetic confounding was assessed using colocalization. 

Reverse causation was examined using Steiger filtering and bidirectional MR. In addition, in Chapter 

3, using the inverse variance weighted (IVW) method, I reported suggestive evidence that glioma risk 

is altered by leukocyte telomere length, liability to allergic disease (asthma, hay fever or eczema), 

alcohol consumption, childhood obesity, low-density lipoprotein cholesterol (LDLc) and triglyceride 

levels. It is possible that these putative glioma related traits influence glioma risk via gene expression 

pathways which include DNAm. Thus, using a two-step MR approach I examined molecular 

mechanisms (such as DNAm between glioma related traits and glioma risk).  

Data was used from a recently published catalogue of germline genetic variants associated 

with DNAm variation in blood tissue from the mQTL database Genetics of DNA Methylation 

Consortium (GoDMC) (n=32,851) [361] and from the full summary-level data from a genome-wide 

association study of glioma risk (12,488 glioma cases and 18,190 controls, sub-divided into 6,191 

glioblastoma cases and 5,819 non-glioblastoma cases). Gene expression data from blood tissue 

(n=31,684) and brain (n=1,194) tissue was incorporated to support any findings that indicated DNAm 

resides on the causal pathway between glioma related traits and glioma risk.   

MR evidence indicated that DNAm at 3 CpG sites (cg01561092, cg05926943, cg01584448) in 

one genomic region (HEATR3) had a putative association with glioma and glioblastoma risk (False 

discovery rate [FDR] < 0.05). Steiger filtering provided evidence against reverse causation. 

Colocalization presented evidence against genetic confounding and suggested that differential DNAm 

at the 3 CpG sites and glioma were driven by the same genetic variant. By examining the role of DNAm 

variation at these 3 CpG sites with putative glioma related traits identified in Chapter 3 (alcohol 

consumption, allergic disease, childhood obesity, LDL cholesterol, triglycerides, and telomere length), 

I report evidence that DNAm at 2 of these CpG sites (cg01561092, cg05926943) are associated with 
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telomere length. MR offered little evidence to suggest that DNAm acts as a mediator on the causal 

pathway between glioma related traits previously examined and glioma onset. 
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4.2 Introduction  

DNA methylation (DNAm) represents a significant epigenetic mechanism that is implicated in 

various biological processes including, aging [425], male infertility [426], and cancer [120]. Previous 

studies have discovered DNAm alterations in cancer, including hypermethylation of the O (6)-

methylguanine-DNA methyltransferase (MGMT) promoter cytosine-guanine dinucleotides (CpG) 

islands in glioblastoma [427-429]. Furthermore, DNAm is hypothesised to mediate the effects of 

environmental factors on disease risk, as it is recognised that DNAm can be influenced by external 

stimuli and change over time [424]. For instance, alcohol consumption is thought to cause DNAm 

alterations [430] and there is suggestive evidence that these CpG sites may mediate the effect of 

alcohol consumption on epithelial ovarian cancer risk [431]. DNAm of single CpG sites is also known 

to influence gene expression [432, 433] and is reported to be involved in the susceptibility of cancer. 

For example, increased global methylation is associated with a decreased risk of breast cancer, 

whereas higher levels of methylation within functional promoters are associated with an increased 

risk of breast cancer [434, 435].  

4.2.1 Glioma and DNA methylation  

The knowledge of the genetics and the epigenetics of glioma has hugely developed over the 

last decade. The latest (5th) edition of the WHO classification of tumours of the central nervous system 

[24] builds upon and incorporates new diagnoses involving epigenetic alterations, including DNAm. As 

discussed in Chapter 1, DNAm is currently an important biomarker for informing treatment and 

outcome in glioma (e.g., Isocitrate dehydrogenase [IDH] mutations; codeletion of 1p/19q; MGMT 

promoter methylation; and glioma CpG island methylator phenotype [G-CIMP+]). Nevertheless, little 

is known about the causal role of DNAm in the development of glioma.  

One method to examine DNAm variation linked to glioma incidence is to undertake an 

epigenome-wide association study (EWAS) [436-446]. However, most EWAS have been limited by very 

modest sample sizes or have been undertaken using glioma tumour tissue which are potentially biased 

through confounding by treatment thus restricting any inferences that can be made with respect to 
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disease aetiology. Additionally, it is difficult to establish the direction of effect in an EWAS as DNAm is 

prone to both reverse causation and confounding. Patterns of DNAm variation are variable across the 

life course and can be influenced by disease onset and confounding [447, 448]. DNAm can differ across 

tissues and therefore it is essential to consider the appropriate tissue when examining DNAm to avoid 

confounding by cellular heterogeneity [449, 450].  

Assessing how variation in DNAm influences glioma risk can lead to an improved 

understanding of glioma development. Additionally, variation in DNAm could potentially alter gene 

expression of genes involved in glioma onset [451, 452], which can be utilised to develop potential 

novel preventative and therapeutic strategies. Therefore, there is a need to comprehensively examine 

the link between DNAm, gene expression and glioma risk.  

4.2.2 Glioma related traits and DNA methylation  

Several EWAS that have examined associations between DNAm and the glioma related traits 

identified in Chapter 3 have been performed to date. A recent EWAS identified 2504 CpG sites 

(Bonferroni p value < 6.8 × 10−8) associated with alcohol consumption (N=8,161) [453]. An EWAS of 

leukocyte telomere length using 7 cohorts (n=5,713) reported 823 CpG sites associated with telomere 

length (p value < 1 × 10−7) [454]. A recent systematic review identified 4 EWAS studies that have been 

conducted in adults to test the association between DNAm and asthma [455], which identified 

thousands of differentially methylated sites. Robinson, N et al (2021) conducted an EWAS to 

investigate associations between CpG sites and rapid weight gain in infancy [456] and reported a small 

increase in methylation at 2 CpG sites. An EWAS of lipids in 725 participants reported no associations 

between DNAm and LDLc but reported 4 CpG sites that were associated with triglycerides [457]. 

However, for all these traits there have been limited studies assessing causality and the mechanisms 

by which these traits associate with DNAm.  
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4.2.3 Assessing causality in these analyses.  

In this chapter, I developed an analytical framework to evaluate the causal role of DNAm in 

glioma onset and propose 6 possible scenarios to explain them (Figure 4-1). First, genetic variants to 

proxy CpG sites in an MR setting were constructed from the mQTL database Genetics of DNA 

Methylation Consortium (GoDMC) [http://www.godmc.org.uk/] (n=32,851) [361]. The association 

between DNAm, glioma risk and putative glioma-related traits (traits with IVW evidence of an 

association with glioma risk in Chapter 3) was formally assessed by applying a two-sample and two-

step MR approach (scenario 1 and 2). Next, Steiger filtering and bidirectional MR were applied to 

establish the causal direction of effect between DNAm and glioma risk or glioma-related traits 

(scenario 3). Subsequent colocalization analyses were implemented at each locus with MR evidence 

of an effect to establish if DNAm and glioma onset shared the same causal variant. This is to assess 

the likelihood that the MR estimate is a result of linkage disequilibrium (LD) by comparing regional 

distributions of associations across both traits (scenario 4). The MR estimate may be biased in the 

presence of horizontal pleiotropy (scenario 5), where the genetic instrument is associated with more 

than one exposure, each of which influence the outcome through independent pathways. One 

important factor in understanding causal pathways involving DNAm is tissue specificity. Therefore, 

gene expression data from blood tissue from the eQTLGen Consortium ([n=31,684] 

[https://www.eqtlgen.org/]) [363] and brain tissue from The Genotype-Tissue Expression project 

(GTEx) v8 (n=1,194)[362] were incorporated. To provide further supporting evidence of vertical 

pleiotropy which is consistent with causality (i.e., DNAm influences glioma risk which is mediated by 

gene expression) I incorporated multiple trait colocalization (scenario 6).  

https://www.eqtlgen.org/
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Figure 4-1 – The six scenarios in which DNA methylation (DNAm) could associated with glioma. 1, The genetic variant (single 
nucleotide polymorphism [SNP]) influences a putative glioma related trait, mediated by DNAm; 2, The genetic variant 
influences glioma, this effect is mediated by DNAm; 3, The genetic variant influences glioma which has downstream effects 
on DNAm; 4, The genetic variant that influences DNAm is in linkage disequilibrium (LD) with another genetic variant which 
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affects glioma; 5, The genetic variant influences both DNAm and glioma via two independent biological pathways; 6, The 
genetic variant influences glioma, this effect is mediated by gene expression. 

4.2.4 Chapter Objectives 

This chapter incorporates both genetic and epigenetic data to establish if DNAm mediates the 

effect of the putative glioma related traits and to establish the role of DNAm in glioma risk. MR, 

colocalization, Steiger filtering, bidirectional MR, and multiple trait colocalization were implemented 

to evaluate the 6 scenarios summarised above. As a large proportion of the CpG sites were 

instrumented by a single mQTL it was not possible to differentiate causality from horizontal pleiotropy, 

thus effects of CpG sites inferred are tentative. Inferred CpG sites were annotated to genes to 

investigate their overlap with gene expression to provide supporting evidence to a vertical pleiotropy 

model using gene expression data from the brain and blood.  
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4.3 Methods  

A flow diagram representing the MR analytical framework is displayed in Figure 4-2.  

 

Figure 4-2 – A summary of the analysis pipeline. All Mendelian randomization (MR) estimates were subject to further 
sensitivity analysis (colocalization and Steiger filtering) to enhance evidence for causal inference.   

 



 

134 
 

Reported results from all analyses are MR effect estimates that met either the false discovery 

rate (FDR) threshold (when DNAm or gene expression is the exposure) or the Bonferroni-corrected p-

value threshold (glioma related traits is the exposure), showed evidence of colocalization [458] to rule 

out genetic confounding, and displayed little evidence to suggest reverse causation through Steiger 

filtering [242]. All MR analyses were conducted using the “TwoSampleMR” package in R studio 

(version 4.1.0) using the computational facilities of the Advanced Computing Research Centre, 

University of Bristol (http://www.bristol.ac.uk/acrc/). The approximate computation time for running 

a “TwoSampleMR” analyses depends on the type of data analysed. For this analysis the approximate 

time was at least one day to run the MR analysis. 

When DNAm or gene expression were instrumented as the exposure, I opted to use a more 

liberal FDR corrected p-value threshold, as I did not expect complete independence of all statistical 

tests (within overall glioma, glioblastoma, or non-glioblastoma analyses), compared to the Bonferroni 

p-value threshold used, when a glioma related trait was instrumented as the exposure. 

4.3.1 Data harmonization  

All palindromic SNPs and SNPs with incompatible alleles across datasets were removed. 

Additional details on data harmonization can be found in Chapter 2.  

4.3.2 Mendelian randomization estimate 

In cases where there was a single nucleotide polymorphism (SNP) to act as a proxy for the 

exposure of interest (e.g., DNAm), the causal effect estimates from MR were calculated using the Wald 

ratio (βGD/βGP) [309] and standard errors approximated using the delta method [459]. Where the 

exposure (e.g., DNAm variation at a CpG site) was instrumented by multiple independent SNPs 

(r2<0.001), causal effect estimates were calculated using the random effects inverse variance weighted 

(IVW) method to allow overdispersion, where the Wald ratios were combined into a single causal 

estimate by meta-analysis [313].  

http://www.bristol.ac.uk/acrc/
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4.3.3 Colocalization 

IV2 violations can occur through genetic confounding if genetic variants are correlated 

through linkage LD (Figure 4-3). Therefore, for associations which met the p-value threshold (FDR < 

0.05) I applied pairwise conditional and colocalization (PWCoCo) [329] to determine whether the 

genetic variant associated with the exposure, e.g., DNAm, was the same genetic variant altering the 

outcome e.g., glioma (i.e., as identified in glioma genome wide association study [GWAS]), thus 

permitting evaluation of the presence of genetic confounding [338]. Colocalization requires providing 

prior probabilities that any random SNP within the genomic region of interest is associated with the 

exposure, the outcome or both (p1 = 1e-4, p2 = 1e-4, p12 = 1e-5). SNPs from a ±250 kilo base pair (kb) 

window were extracted around the instrumented SNP(s) for each putative causal SNP from the 

exposure and outcome GWAS. A posterior probability for H4>0.8 was designated as “strong” and 0.7> 

a posterior probability for H4<0.8 as “suggestive” evidence. Additional details on colocalization can be 

found in Chapter 2.  

 

Figure 4-3 – The instrumental variable conditions that are required for an MR analysis. IV1, the genetic variant used as an 
IV is associated with the exposure of interest. IV2, the genetic variant is not associated with any common causes of the 
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exposure and outcome. IV3, the genetic variant only influences the outcome through the exposure and does not affect any 
other traits that have downstream effects on the outcome of interest. The dashed line indicates no association. 

4.3.4 Directionality test  

To increase the likelihood that MR infers the correct causal direction between the exposure 

(e.g., DNAm) and the outcome (e.g., glioma), I applied the Steiger filtering method to test for reverse 

causation [242]. Steiger filtering removes SNPs that explain more of the variance in the outcome than 

the exposure and therefore the MR estimate is less likely to biased by misspecification in the MR 

model (Figure 4-3). Steiger filtering was performed for the putative causal variants identified in the 

MR analysis that showed evidence of colocalization. 

4.3.5 Bidirectional Mendelian randomization (Glioma → DNAm) 

It is possible that a genetic variant used to proxy an exposure (e.g., DNAm) may have its 

primary effect through an outcome (e.g., glioma risk) rather than though DNAm variation. To further 

increase the probability that the MR association was in the correct hypothesised direction (e.g., DNAm 

→ glioma risk) I assessed the chance of reverse causation (glioma risk → DNAm) using bidirectional 

MR. I generated IVs for glioma using SNPs that robustly associated with glioma at genome wide 

significance (P < 5×10-8) and that had undergone LD clumping (r2 <0.001) from the GWAS meta-analysis 

of 12,488 glioma cases and 18,190 controls [339]. IVs were generated using the same approach for 

glioblastoma (6,191 cases). As I found little evidence that DNAm causally influenced non-glioblastoma 

I did not generate IVs for non-glioblastoma. To measure instrument strength, I examined the variance 

in glioma explained by the IVs (R2) and the F statistic [308]. If a genetic instrument acting as an IV for 

the exposure was not present in the outcome GWAS it was replaced by a proxy variant in high LD 

(r2>0.8) with it [460]. Two-sample MR was implemented to ascertain the potential causal effects of 

glioma risk on circulating DNAm. 
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4.3.6 Hypothesis 1  

A summary of the research questions addressed in hypothesis 1 is displayed in Figure 4-4.  

 

Figure 4-4 – A summary of hypothesis 1. In step 1, DNA methylation (DNAm) is the exposure and glioma is the outcome. In 
Step 2, DNAm is the exposure and glioma related traits are the outcome. An association between DNAm with glioma and 
glioma related traits indicates that DNAm influences the glioma related trait which then in turn influences glioma risk. MR, 
Mendelian randomization; mQTL, methylation quantitative trait loci. 

4.3.7 Step 1 - Evaluating the relationship between DNA methylation and glioma risk.  

4.3.8 Instrument selection  

Two-sample MR was implemented to ascertain the potential causal effects of circulating 

DNAm on glioma risk. To create genetic IVs for DNAm as the exposure I used effect estimates for 

germline cis-SNPs (SNPs within a ±250kBP window of the CpG site) robustly associated with DNAm at 

CpG sites (mQTL) at genome wide significance (P < 5×10-8)[361] that had undergone LD clumping 

(r2 <0.001) from the mQTL database Genetics of DNA Methylation Consortium (GoDMC) 

[http://www.godmc.org.uk/] (n=32,851) [361]. To measure instrument strength, I examined the 

variance in DNAm explained by the mQTLs (R2) and the F statistic [308].   

4.3.9 Outcome selection  

For the glioma outcome, summary data were obtained from a GWAS meta-analysis of 12,488 

glioma cases and 18,190 controls [339]. MR analyses were performed to assess the causal impact of 

DNAm variation on glioma subtypes: glioblastoma (6,191 cases) and non-glioblastoma (5,819 cases). 

4.3.10 Mendelian randomization effect estimate and p-value threshold.  

MR effect estimates are reported as odds ratios (OR) (95% confidence intervals (CI)) per 1 

standard deviation (SD) increase in genetically proxied DNAm. 
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4.3.11 Step 2 - Evaluating the relationship between DNA methylation and glioma related traits.  

4.3.12 Instrument selection.  

As described above, IVs for DNAm were generated (r2 <0.001, P < 5×10-8) for CpG sites 

associated with either glioma, glioblastoma, and/or non-glioblastoma in step 1 above.  

4.3.13 Outcome selection  

For the outcome, summary data for the putative glioma related traits identified in Chapter 3 

[461] (genetically predicted leukocyte telomere length, allergic disease, alcohol consumption, 

childhood extreme obesity, LDLc and triglyceride levels) was obtained from MR-Base (a curated data 

base that contains complete GWAS results) [275] (Table 4-1).  

Glioma related trait  No of participants or No. cases No. controls Units  Pop. PubMed ID 

Alcohol Consumption 112117 - SD proxy EUR 28937693 

Allergic disease 180129 180709 Log odds EUR 29083406 

Low density lipoprotein cholesterol  441016 - SD EUR 32203549 

Obesity (early onset)  5530 8318 log odds EUR 22484627 

Telomere length 9190 - SD EUR 21573004 

Triglycerides 441016 - SD EUR 32203549 

Table 4-1 – The glioma related traits used as an outcome in the MR analysis. SD, standard deviation. Pop, population of 
the study participants.  

4.3.14 Follow up tissue-specific Mendelian randomization analysis. 

For the CpG sites that showed robust evidence of an effect with glioma risk, I investigated 

whether variation in tissue-specific gene expression was responsible for the effect with glioma risk. 

For the analysis I utilised blood tissue by incorporating gene expression data from the eQTLGen 

Consortium (n=31,684) (https://www.eqtlgen.org/) [363] and brain tissue utilising gene expression 

data from 13 brain tissues from The Genotype-Tissue Expression project (GTEx) v8 (n=1,194)[362].   

CpG sites were annotated to genes using the R package meffil [462]. IVs for genes were 

constructed using effect estimates for germline cis-SNPs (within a ±250kBP window) associated with 

gene expression variation in brain and blood, namely expression quantitative trait loci (eQTLs) at 

genome wide significance (P < 5×10-8) [361] that had undergone LD clumping (r2 <0.001). To measure 

instrument strength, I examined the variance in gene expression explained by the eQTLs (R2) and the 

F statistic. [308].   

https://www.ncbi.nlm.nih.gov/pubmed/32203549
https://www.eqtlgen.org/
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4.3.15 Multiple trait colocalization  

For genes that appeared to overlap with the CpG sites of interest I applied multiple trait 

colocalization (moloc) [463] to investigate whether the same genetic variant influences proximal 

DNAm, proximal gene expression and glioma risk. Such analyses can provide evidence to support gene 

expression and DNAm residing on the same causal pathway to glioma onset [273]. I implemented 

“moloc” using data from three different data sources: DNAm data from the mQTL database GoDMC 

[http://www.godmc.org.uk/] (n=32,851) [361], gene expression data from the eQTLGen Consortium 

(n=31,684) (https://www.eqtlgen.org/) [363] and GWAS meta-analysis data for glioma [339]. Moloc 

default prior probabilities were implemented (p1 = 1x10-4, p2 = 1x10-6 and p3 = 1x10-7), p1 was used 

for one association, p2 for two associations, and p3 for colocalization of all three associations. I 

examined colocalization with expression of all genes within a ±250kBP window of the CpG site of 

interest. At least 50 variants (minor allele frequency [MAF] > 0.05) common to all three datasets were 

required for the analysis. A posterior probability of greater than 70% was considered suggestive 

evidence of colocalization. All analyses were undertaken in R version 4.1.0. 
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4.3.16 Hypothesis 2 

A summary of the research questions addressed in hypothesis 2 is displayed in Figure 4-5.  

 

Figure 4-5 - A summary of hypothesis 2: In step 1, the glioma related trait is the exposure and DNA methylation (DNAm) is 
the outcome. In Step 2, DNAm is the exposure and glioma is the outcome. An association between DNAm with glioma and 
glioma related traits indicates that DNAm mediates the effect of the glioma related trait on glioma risk. MR, Mendelian 
randomization; mQTL, methylation quantitative trait loci.  

4.3.17 Step 1 - Evaluating the relationship between glioma related traits and DNA methylation.  

Genetic instruments for the glioma related traits were collated from MR-Base [275] or directly 

from the relevant GWAS (details of studies used to obtain genetic instruments are given in Table 4.2).  

Glioma related trait  No of participants or No. cases No. controls Pop. PubMed ID 

Telomere length 9190 - EUR 21573004 

Allergic disease 180129 180709 EUR 29083406 

Alcohol Consumption 941280 - EUR 30643251 

Obesity (early onset)  463005   EUR 32376654 

Low density lipoprotein cholesterol 441016   EUR 32203549 

Triglycerides  441016 - EUR 32203549 

Table 4-2 – A description of where summary effect estimates were sourced from to proxy the putative glioma related 
traits in the MR analysis. Pop, population of study participants.  

Genetic instruments were created using SNPs with an F statistic equal to or greater than 10, 

shown to be robustly (P < 5 × 10− 8) and independently (r2 < 0.001) associated with the glioma related 

trait under examination in individuals of European ancestry. 

4.3.18 Outcome selection  

For the outcome, summary data were obtained from the mQTL database GoDMC 

[http://www.godmc.org.uk/] (n=32,851) [361]. 

https://www.ncbi.nlm.nih.gov/pubmed/32203549
https://www.ncbi.nlm.nih.gov/pubmed/32203549
https://www.ncbi.nlm.nih.gov/pubmed/32203549


 

141 
 

4.3.19 Mendelian randomization estimate and p-value threshold. 

The MR estimate was expressed as SD increase in methylation per unit increase in the glioma 

related trait. A Bonferroni-corrected p-value threshold, P value <0.0083 (0.05/6 as there were 6 traits 

included in the analysis), was used to evaluate the strength of the statistical evidence. 

4.3.20 Step 2 - Evaluating the relationship between DNA methylation associated with glioma related 
traits and glioma risk.  

Using IVs for the CpG sites that were influenced by putative glioma related traits, I examined 

if DNAm variation at these CpG sites had an MR effect on glioma risk using the glioma GWAS (12,488 

glioma cases and 18,190 controls) [339]. MR effect estimates are reported as the OR (95% CI) per 1 SD 

increase in genetically proxied DNAm. 
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4.4 Results  

4.4.1 Does DNA methylation causally influence glioma risk and glioma related traits? 

Using the full summary statistics for the 232,476 CpG sites (n=32,851) reported in GoDMC, IVs 

were constructed (P < 5 × 10−8 and r2 < 0.001) to act as a proxy for 42,659 CpG sites that could be used 

in a two-sample MR framework.  

Two-sample MR was used to investigate the potential causal effect of DNAm variation at 

42,659 CpG sites and glioma risk. For glioma risk there was MR evidence for 284 CpG-glioma effects 

that met the FDR correction threshold (<0.05). Full MR results can be found in Appendix 2.1. F-statistic 

calculations indicated that all 284 CpG sites linked to glioma had an F-statistic > 10 (Appendix 2.2) 

which suggests that the MR estimate was less likely to be affected by weak instrument bias.  

As a sensitivity analysis, colocalization was used to establish the probability that DNAm and 

glioma were driven by the same causal variant at each locus. In the colocalization analyses, I found 

suggestive evidence (H4 > 70%) that DNAm at 3 of the 284 CpG sites and glioma were driven by the 

same genetic variant. Next, I examined the directionality of DNAm at the 3 CpG sites and glioma risk 

using the Steiger filtering method: the 3 CpG sites showed evidence that the direction of effect was 

methylation influencing glioma risk. 2 of these CpG sites were instrumented by a single mQTL and the 

other CpG site was instrumented by 2 mQTLs. Complete results from both MR and sensitivity analysis 

are summarised in Table 4-3.  

Outcome CpG site Number of SNPs OR (95% CI) p-adjusted H4 > 0.8 H4 > 0.7 Steiger 
direction  

Glioma cg01584448 1 5.62 (3.37-9.38) 1.00E-07 FALSE TRUE TRUE 

Glioma cg05926943 1 0.38 (0.28-0.51) 1.16E-07 FALSE TRUE TRUE 

Glioma cg01561092 2 0.85 (0.79-0.92) 1.48E-02 FALSE TRUE TRUE 

Table 4-3 – CpG sites that met the FDR correction threshold (p-value < 0.05) in the MR analyses of glioma risk, showed 
evidence of colocalization (H4 >0.7) and the correct direction of effect. OR, odds ratio per standard deviation change in 
methylation; 95% CI, 95% confidence intervals; p-value, p-value for the observed effect; SNP, single nucleotide polymorphism. 

In the subtype analysis, there were 209 CpG-glioblastoma (F-statistic > 10) MR estimates that 

met the FDR correction threshold (FDR<0.05) (Appendix 2.3). 3 CpG-glioblastoma associations showed 

evidence of colocalization and all 3 CpG sites showed evidence that the direction of effect was 
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methylation influencing glioblastoma risk. Again, there were 2 CpG sites that were instrumented by a 

single mQTL and 1 CpG site that was instrumented by 2 mQTLs. The full MR results and results from 

each sensitivity analysis is summarised in Table 4-4.  

Outcome Exposure Number of SNPs OR (95% CI)  p-adjusted H4>0.8 H4>0.7 Steiger 
direction 

Glioblastoma cg05926943 1 0.29 (0.2-0.41) 1.33E-08 FALSE TRUE TRUE 

Glioblastoma cg01584448 1 9.02 (4.81-16.91) 1.88E-08 FALSE TRUE TRUE 

Glioblastoma cg01561092 2 0.79 (0.72-0.87) 1.55E-03 FALSE TRUE TRUE 

Table 4-4 - CpG sites that met the FDR correction threshold <0.05 in the MR analyses against glioblastoma, showed 
evidence of colocalization (H4 >0.7) and the correct direction of effect. OR, odds ratio per standard deviation change in 
methylation; 95% CI, 95% confidence intervals; p-value, p-value for the observed effect. SNP, single nucleotide polymorphism. 

For the glioma subtypes there were 175 CpG-non-glioblastoma effects (F-statistic > 10) that 

met the FDR correction threshold (<0.05) (Appendix 2.4). Of these 175 CpG sites, 0 CpG-non-

glioblastoma effects showed strong evidence of colocalization.  

 

Figure 4-6 – Forest plot of CpG sites that showed robust MR evidence of an association with glioma or glioblastoma and 
colocalized with glioma or glioblastoma. OR, per standard deviation change in genetically proxied DNA methylation; 95% CI, 
95% confidence intervals; p-adjusted, p-value adjusted for FDR for the observed effect. 

The 3 CpG sites that showed MR and colocalization evidence of an association with glioma 

and glioblastoma are displayed in Figure 4-6. In summary, the results indicate that increased levels of 

DNAm at cg01584448 increases risk of glioma (OR 5.62, 95% CI 3.37-9.38, p-adjusted 1 × 10− 7) and 

glioblastoma (OR 9.02, 95% CI 4.81-16.91, p-adjusted 1.88 × 10− 8). cg5926943 and cg01561092 were 
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associated with a decrease in the risk of both glioma (OR 0.38, 95% CI 0.28-0.51, p-adjusted 1.16 × 10− 7; 

OR 0.85, 95% CI 0.79-0.92, p-adjusted 1.48 × 10− 2) and glioblastoma (OR 0.29, 95% CI 0.20-0.41, p-

adjusted 1.33 × 10− 8; OR 0.79, 95% CI 0.72-0.87, p-adjusted 1.55 × 10− 3), respectively.  

4.4.2 Effect of glioma risk on DNA methylation  

To further assess the direction of effect, genetic instruments to proxy glioma and glioblastoma 

were constructed (Table 4-5). In summary, 13 SNPs were available as IVs for glioma and 12 SNPs were 

available to proxy glioblastoma. The F-statistic for these instruments used in the reverse MR suggested 

that the associations were not affected by weak instrument bias (F-statistic > 10). 

SNP Chr Pos Effect allele Other allele eaf beta Se p-value exposure 

rs10069690 5 1279790 T C 0.303 0.37 0.022 2.32E-66 Glioma 

rs12803321 11 1.18E+08 C G 0.327 -0.16 0.020 1.07E-15 Glioma 

rs759169 7 55154636 C T 0.836 -0.19 0.025 1.95E-14 Glioma 

rs35850753 17 7578671 T C 0.0315 0.73 0.058 1.67E-36 Glioma 

rs8051902 16 50099777 T C 0.728 0.14 0.020 2.27E-11 Glioma 

rs4608623 22 38597378 T G 0.548 -0.10 0.018 1.25E-08 Glioma 

rs2297440 20 62312299 C T 0.797 0.31 0.022 2.53E-42 Glioma 

rs2157719 9 22033366 T C 0.529 -0.26 0.018 1.83E-46 Glioma 

rs75061358 7 54916280 G T 0.0911 0.35 0.033 4.99E-27 Glioma 

rs55705857 8 1.31E+08 G A 0.083 0.69 0.037 1.99E-78 Glioma 

rs12752552 1 65229299 C T 0.119 -0.16 0.028 3.33E-09 Glioma 

rs3751667 16 1004554 T C 0.244 0.13 0.021 9.33E-10 Glioma 

rs4951389 1 2.04E+08 T G 0.697 0.11 0.020 2.21E-08 Glioma 

rs10069690 5 1279790 T C 0.304 0.48 0.026 6.92E-75 Glioblastoma 

rs759169 7 55154636 C T 0.837 -0.23 0.030 5.53E-14 Glioblastoma 

rs35850753 17 7578671 T C 0.0294 0.78 0.073 1.11E-26 Glioblastoma 

rs2235573 22 38477930 A G 0.483 -0.15 0.022 3.18E-11 Glioblastoma 

rs4389139 16 50100253 A T 0.726 0.17 0.025 3.92E-12 Glioblastoma 

rs2297440 20 62312299 C T 0.796 0.40 0.027 1.76E-47 Glioblastoma 

rs11233250 11 82397014 T C 0.111 -0.23 0.036 2.08E-10 Glioblastoma 

rs2562152 16 123896 T A 0.870 0.19 0.034 4.94E-08 Glioblastoma 

rs75061358 7 54916280 G T 0.0908 0.48 0.040 6.41E-33 Glioblastoma 

rs11143912 9 76924592 A C 0.0869 0.22 0.039 2.13E-08 Glioblastoma 

rs12752552 1 65229299 C T 0.120 -0.21 0.039 4.39E-10 Glioblastoma 

rs634537 9 22032152 G T 0.458 0.32 0.023 7.83E-46 Glioblastoma 
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Table 4-5 – Genetic instruments for glioma and glioblastoma. Eaf; effect allele frequency; se, standard error; SNP, single 
nucleotide polymorphism. Chr and pos are the chromosome and position of the SNP. 

Bidirectional MR was performed to investigate whether glioma has a causal effect on DNAm. 

In this MR analysis, glioma risk was the exposure and DNAm was the outcome. Both glioma and 

glioblastoma were instrumented by a single genetic variant as there were no SNPs in LD (r2>0.8) with 

the genetic variants that were missing in the DNAm outcome data. MR estimates were estimated using 

the Wald ratio test. Results from the MR analysis are summarised in Table 4-6. MR and colocalization 

provided evidence that glioma and glioblastoma liability influences DNAm at the 3 CpG sites. However, 

this analysis is likely restricted by low statistical power, and it was not possible to appraise horizontal 

pleiotropy. Therefore, the results should be interpreted with caution.  

Exposure Outcome  Number of SNPs beta 95% CI p-value H4 > 0.8 

Glioma cg01561092 1 -7.66 (-7.76--7.55) 0 TRUE 

Glioma cg05926943 1 -1.01 (-1.15--0.87) 3.11E-47 TRUE 

Glioma cg01584448 1 0.57 (0.43-0.71) 4.74E-16 TRUE 

Glioblastoma cg01561092 1 -6.00 (-6.08--5.92) 0 TRUE 

Glioblastoma cg05926943 1 -0.79 (-0.90--0.69) 2.27E-47 TRUE 

Glioblastoma cg01584448 1 0.45 (0.34-0.56) 3.99E-16 TRUE 

Table 4-6 – The results from the bidirectional Mendelian randomization. beta, standard deviation change in methylation 
per unit increase in glioma risk; SNP, single nucleotide polymorphism.  

4.4.3 Appraising the causal role of DNA methylation on glioma related traits.   

Next, I sought to establish if DNAm at the same 3 CpG sites (cg01561092, cg01584448, 

cg05926943) putatively influencing glioma risk also influenced suggestive glioma related traits 

identified in Chapter 3. Instruments to proxy DNAm at 3 CpG sites are given in Table 4-7. I performed 

two-sample MR to examine the causal role of DNAm variation at the 3 CpG sites with putative glioma 

traits.  

Chromo
some 

Position  beta se p-value Effect 
allele 

Other 
allele 

eaf  SNP CpG 

16 50285689 -0.26 0.012 1.36E-100 C G 0.371 rs3915616 cg01561092 

16 49994729 0.43 0.0089 1.00E-200 C G 0.417 rs9922332 cg01561092 

16 50098887 -0.078 0.0095 3.64E-16 A C 0.277 rs8046856 cg01584448 

16 50109100 0.14 0.0095 1.43E-47 T C 0.278 rs9939688 cg05926943 
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Table 4-7 – Genetic instruments used for the CpG sites that robustly associated with glioma or subtype risk in the MR 
analysis and showed evidence of colocalization. Eaf, effect allele frequency; se, standard error; SNP, single nucleotide 
polymorphism.  

The results from the extensive analysis are presented in Table 4-8. I identified 5 associations 

that survived the FDR corrected p-value threshold (p-adjusted < 0.05). Two of these associations were 

robust to colocalization and Steiger filtering. The results indicate that DNAm variation at cg05926943 

and cg01561092 are associated with an increase in telomere length (OR 1.12, 95% CI 1.08-1.15, p-

adjusted 3.90 × 10− 11: OR 1.04, 95% CI 1.03-1.06, p-adjusted 8.96 × 10− 7), respectively (Figure 4-7).  

Exposure Outcome MR 
base 
ID 

OR (95% CI) P-value P-value 
adjusted 

P-value 
< 0.05 

Steiger 
directio
n 

H4 > 0.8 

cg01561092 Alcohol 
consumption  

ieu-a-
1283 

1.02 (0.99-1.04) 0.170 0.340 FALSE - - 

cg01584448 Alcohol 
consumption  

ieu-a-
1283 

1.01 (0.93-1.09) 0.868 1.16 FALSE - - 

cg05926943 Alcohol 
consumption  

ieu-a-
1283 

1.00 (0.96-1.04) 0.987 1.05 FALSE - - 

cg01561092 Allergic 
disease 
(asthma, hay 
fever or 
eczema)  

ebi-a-
GCST0
05038 

0.99 (0.94-1.04) 0.628 1.00 FALSE - - 

cg01584448 Allergic 
disease 
(asthma, hay 
fever or 
eczema)  

ebi-a-
GCST0
05038 

1.01 (0.86-1.18) 0.949 1.17 FALSE - - 

cg05926943 Allergic 
disease 
(asthma, hay 
fever or 
eczema)  

ebi-a-
GCST0
05038 

1.00 (0.91-1.09) 0.987 0.987 FALSE - - 

cg01584448 Childhood 
obesity  

ieu-a-
1096 

0.81 (0.39-1.68) 0.565 1.00 FALSE - - 

cg01584448 LDL 
cholesterol 

ieu-b-
110 

0.94 (0.88-0.99) 0.0248 0.0566 FALSE - - 

cg05926943 LDL 
cholesterol  

ieu-b-
110 

1.04 (1.00-1.07) 0.0243 0.0648 FALSE - - 

cg01561092 LDL 
cholesterol  

ieu-b-
110 

1.00 (0.98-1.02) 0.950 1.086 FALSE - - 

cg01584448 Telomere 
length 

ieu-b-
4879 

0.82 (0.77-0.86) 8.88E-13 1.421E-11 TRUE TRUE FALSE 

cg05926943 Telomere 
length 

ieu-b-
4879 

1.12 (1.08-1.15) 4.87E-12 3.896E-11 TRUE TRUE TRUE 

cg01561092 Telomere 
length  

ieu-b-
4879 

1.04 (1.03-1.06) 1.68E-07 8.96E-07 TRUE TRUE TRUE 

cg01584448 Triglycerides ieu-b-
111 

0.92 (0.87-0.97) 0.00260 0.00831 TRUE TRUE FALSE 

cg05926943 Triglycerides  ieu-b-
111 

1.05 (1.02-1.08) 0.00240 0.00961 TRUE TRUE FALSE 

cg01561092 Triglycerides  ieu-b-
111 

1.00 (0.98-1.01) 0.725 1.05 FALSE - - 
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Table 4-8 – The Mendelian randomization, colocalization and Steiger filtering results for the MR analysis of DNAm on 
glioma related traits. OR, odds ratio (95% confidence intervals [CI]) per 1 standard deviation change in genetically proxied 
DNA methylation. 

 

 
 

 

Figure 4-7 – The association between the CpG sites that associated with glioma or glioma subtype risk and genetically 
proxied telomere length. p-value, p-value for the observed effect; OR, per 1 standard deviation (SD) change in genetically 
proxied DNA methylation.   

The MR estimates of CpG methylation on glioma, glioblastoma and telomere length are provided in 

Figure 4-8. 
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Figure 4-8 – The association between DNAm with glioma, glioblastoma and telomere length; OR (95% CI) is the effect of 
DNAm on glioma, glioblastoma and telomere length. MR effect estimates are reported as odds ratios (95% confidence 
intervals (CI)) per 1 standard deviation change in genetically proxied DNAm.  

 

 

 

 

 



 

149 
 

4.4.4 Overlap with gene expression  

DNAm variation at the 3 CpG sites (cg01561092, cg05926943, cg01584448) found to 

putatively influence glioma and glioblastoma risk were used to investigate hypothesis driven tissue-

specific effects. I hypothesised that DNAm that influences glioma and glioblastoma risk may be 

influenced by gene expression in blood and brain tissue. All 3 CpG sites were annotated to the gene 

HEATR3 (Ensemble ID ENSG00000155393). 

To evaluate the association of gene expression with glioma and glioblastoma risk at HEATR3 

in blood tissue, instruments were constructed using eQTLGen Consortium (n=31,684) (Table 4-9). 

Strong evidence was found that rs116915980, rs3915616 and rs9922332 at HEATR3 are eQTLs for this 

gene. The F-statistic suggested adequate strength (F-stat > 10) to be used as IVs in the MR analysis.  

SNP Effect allele Other allele eaf  beta se P-value 

rs116915980 G A 0.225 0.11 0.014 2.89E-14 

rs3915616 C G 0.375 0.28 0.012 1.10E-115 

rs9922332 C G 0.402 -0.39 0.012 1.00E-200 

Table 4-9 - Genetic instruments used as IVs for the gene in blood tissue that is annotated to CpG sites robustly associated 
with glioma or subtype risk. SNP, single nucleotide polymorphism; se, standard error; eaf, effect allele frequency.  

In the MR analysis, I observed evidence that survived the FDR corrected p-value threshold (p-

adjusted < 0.05), colocalization and Steiger filtering, that gene expression at HEATR3 was associated 

with an increase in glioma risk (OR 1.20, 95% CI 1.11-1.29, p-adjusted 7.61 × 10− 6) and an increase in 

glioblastoma risk (OR 1.28, 95% CI 1.16-1.41, p-adjusted 2.54 × 10− 7) (Table 4-10). 

Outcome Exposure p-adjusted OR (95% CI) H4 > 0.8 Steiger direction 

Glioma HEATR3 7.61E-06 1.20 (1.11-1.29) TRUE TRUE 

Glioblastoma HEATR3 2.54E-07 1.28 (1.16-1.41) TRUE TRUE 

Table 4-10 – The MR results for the analysis of differential gene expression in blood tissue with glioma and glioblastoma 
risk. P-adjusted, p-value adjusted for FDR. MR effect estimates are reported as odds ratios (95% confidence intervals (CI)) 
per 1 standard deviation change in genetically proxied differential gene expression. SNP, single nucleotide polymorphism. 

When comparing the DNAm MR results with the gene expression MR results, the direction of 

effect estimated for HEATR3 is consistent with cg01584448. The direction of the estimated effect for 

the two CpG sites (cg01561092, cg05926943) was discordant with gene expression. A comparison of 

the MR estimates is displayed in Figure 4-9. 

https://grch37.ensembl.org/Homo_sapiens/Gene/Summary?g=ENSG00000155393
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Figure 4-9 – Comparison between DNA methylation (DNAm) and gene expression. MR effect estimates are reported as 
odds ratios (95% confidence intervals (CI)) per 1 standard deviation change in genetically proxied DNAm. 
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To establish if the associations between the CpG sites and glioma is mediated by changes in 

gene expression at HEATR3 in blood tissue I applied “moloc”. Moloc assessed the likelihood that 

DNAm, gene expression and glioma susceptibly are driven by the same causal variant. The results 

indicated suggestive evidence (PPA > 70%) of colocalization between gene expression and glioma (but 

not by DNAm at cg01561092). Similarly, colocalization between DNAm and glioma at cg05926943 was 

observed but not with gene expression. The results provided evidence of two distinct causal variants 

for methylation and expression at cg01584448 (Table 4-11).
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(eQTL=E, mQTL=DM, trait=G) 

Trait Tag SNP CpG E E,DM E,G E,DMG E,DM,G DM DM,G EG.DM G EDM,G EDM EG DMG EDMG NULL 

Glioma rs2356838 cg01561092 0 1.60E-07 0 0.19 0.08 0 0 0.72 0 5.47E-22 1.06E-27 0 0 1.18E-21 0 

Glioma rs4238851 cg01584448 0 0.97 0 0.00 0.02 0 0 0.01 0 0 0 0 0 0 0 

Glioma rs8047504 cg05926943 0 1.99E-07 0 0.78 0.10 0 0 0.12 0 0 0 0 0 0 0 

Glioblastoma rs2287197 cg01561092 0 2.63E-08 0 0.67 0.07 0 0 0.26 0 0 0 0 0 0 0 

Glioblastoma rs12102426 cg01584448 0 9.77E-01 0 0.00 0.02 0 0 0.00 0 0 0 0 0 0 0 

Glioblastoma rs1547478 cg05926943 0 1.46E-08 0 0.33 0.04 0 0 0.63 0 0 0 0 0 0 0 

Table 4-11 – The results from the moloc analysis. The columns provide the posterior probability (PPA) for each colocalization scenario where E = eQTL, DM = mQTL, G = trait. The trait is 
provided in the first column. A PPA > 0.7 was used as suggestive evidence for that scenario and PPA > 0.8 was used as strong evidence.  
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Next, to establish if there was an association between gene expression and glioma or 

glioblastoma risk at HEATR3 in brain tissue, instruments were constructed using data from GTEx v8 

(n=1,194) (Table 4-12). The F-statistic indicated sufficient strength (F-stat > 10) to be used as a genetic 

proxy in the MR analysis.  

SNP Effect allele Other allele eaf  beta se p-value Gene 

rs1187411 G A 0.341 -1.11 0.030 1.00E-200 HEATR3 

Table 4-12 – Genetic instruments used to proxy gene expression in brain tissue that annotated to CpG sites robustly 
associated with glioma or subtype risk. SNP, single nucleotide polymorphism; se, standard error; eaf, effect allele 
frequency.  

The two associations from the MR analysis survived the FDR corrected p-value threshold, 

however, neither showed evidence of colocalization suggesting the MR result may be biased by 

genetic confounding. The results from the extensive analyses are provided Table 4-13.  

Outcome P-value OR (95% CI) H4 > 0.7 

Glioma 4.62E-10 1.12 (1.08-1.16) FALSE 

Glioblastoma 8.87E-11 1.15 (1.11-1.21) FALSE 

Table 4-13 – The Mendelian randomization results for the analysis of differential gene expression in brain with glioma 
and glioblastoma risk. P-adjusted, p-value adjusted for FDR. MR effect estimates are reported as odds ratios (OR) (95% 
confidence intervals (CI)) per 1 standard deviation change in differential gene expression.  

4.4.5 Does DNA methylation mediate the effect of glioma related traits on glioma risk?  

4.4.6 Appraising the causal role of glioma traits on DNA methylation.  

Lastly, I hypothesised that DNAm may mediate the causal effect between putative glioma 

related traits and glioma onset. To examine mediation by DNAm, two-sample MR was performed to 

investigate the potential causal role of liability to allergic disease, genetically proxied triglycerides, 

genetically proxied LDLc, genetically proxied alcohol consumption, genetically proxied telomere 

length and genetically proxied childhood obesity with DNAm variation at 42,659 CpG sites. The MR 

analysis indicated little evidence of a causal role for any of the glioma related traits on DNAm variation 

(Bonferroni corrected P value < 0.0083) (Table 4-14).  
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Glioma related 
traits 

Units of trait Number of SNPs 
used an IV 

beta (SD 
increase in 
DNAm per unit 
increase in the 
trait) 

95% CI p-value 

Telomere Length kilobases  
SD = 0.65  

3 -2.33 (-5.98-1.31) 0.211 

Allergic disease 
(asthma, hay 
fever or eczema)  

logOR 66 0.38 (-0.76-1.52) 0.514 

Childhood 
obesity  

 logOR 226 -0.22 (-2.67-2.23) 0.859 

Alcohol 
consumption  

SD = one 
additional drink 
per week 

33 3.69 (-3.86-11.24) 0.339 

LDL cholesterol  SD = 3.57 
mmol/L 

136 0.34 (-0.99-1.67) 0.621 

Triglycerides SD = 1.50 
mmol/L 

251 -0.44 (-1.50-0.62) 0.411 

Table 4-14 – The MR effect estimates of the effect of the glioma related traits on CpG methylation. SD, standard deviation; 
95% CI, confidence intervals; p-value for the observed effect.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

155 
 

4.5 Discussion 

Extensive analyses were conducted to establish the role of DNAm on the causal pathway 

leading to glioma onset. MR evidence robust to the FDR p-value threshold and Steiger filtering 

identified 3 CpG sites (cg01561092, cg05926943, cg01584448) in one genomic region (HEATR3) that 

have a putative association with glioma and glioblastoma risk. In support of these findings, MR 

provided evidence that higher levels of gene expression of HEATR3 in blood tissue was associated with 

an increased risk of glioma and glioblastoma. MR provided little evidence to suggest any CpG sites 

influenced non-glioblastoma. Bidirectional MR did provide evidence that glioma and glioblastoma had 

a causal effect on these 3 CpG sites. Nevertheless, glioma was instrumented by a single SNP; therefore, 

as glioma is a heterogeneous disease, this bidirectional MR analysis was likely limited by statistical 

power due to the small amount of variation in liability to glioma explained by the single SNP. By 

examining the role of DNAm variation at these 3 CpG sites with putative glioma related traits identified 

in Chapter 3 (alcohol consumption, allergic disease, childhood obesity, LDL cholesterol, triglycerides, 

and telomere length), I report evidence that 2 of these CpG sites (cg01561092, cg05926943) 

influenced telomere length. MR offered little evidence to suggest that DNAm acts as a mediator on 

the causal pathway between glioma related traits previously examined and glioma onset. 

Higher levels of methylation at cg01584448 were associated with an increase in glioma and 

glioblastoma risk. Whereas higher levels of methylation at cg5926943 and cg01561092 were 

associated with a lower risk of glioma and glioblastoma. To elucidate the observed putative 

association, the CpG sites were annotated to their closest gene. As the CpG sites reside in close 

genomic positions they were mapped to the same gene, a known oncogene, HEATR3, which has been 

associated with glioma risk in previous studies [341, 464, 465]; thus, providing evidence that the 

genomic region is relevant. Here MR, colocalization and Steiger filtering offered further evidence that 

differential gene expression of HEATR3 within blood tissue increased the risk of glioma and 

glioblastoma. A conflicting pattern of DNAm was observed for cg5926943 and cg01561092 as they 

displayed an opposite correlation with gene expression. A prior study reported an inverse correlation 
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between DNAm and gene expression for various CpGs and their closest gene, in several cancers [466]. 

Similarly, Houshdaran et al reported that DNAm inversely correlated with gene expression in ovarian 

cancer cell lines [467]. Thus, it is possible that the inverse correlation indicates co-regulation of DNAm 

and gene expression with glioma development. 

Due to the complex nature of this interaction between DNAm and gene expression, moloc 

was implemented to establish if glioma, DNAm and gene expression shared a common causal genetic 

variant, to provide further supporting evidence of an underlying causal association between these 

traits rather than findings being driven through genetic confounding (e.g., LD between an mQTL and 

a variant influencing glioma risk). The results from the moloc analysis indicated that gene expression 

colocalizes with glioma but not with DNAm at cg01561092. Similarly, colocalization between DNAm 

and glioma at cg05926943 was observed but not with gene expression. There was evidence of two 

distinct causal variants for methylation and expression at cg01584448. There is evidence of 

colocalization between two of the traits at each CpG site (gene expression and glioma risk; methylation 

and glioma risk) thus it is possible that gene expression is under the control of methylation of a region 

rather than specific CpG sites.  

The incidence and mortality of high-grade glioma increases with age, with the median age at 

diagnosis of 64 years [468]. The 3 CpG sites putatively associated with glioma risk in this study have 

been linked to age in previous EWAS [469]. Age-specific differences in glioma susceptibility could 

reveal clues about glioma aetiology. Additionally, previous models of age, based on DNAm have 

demonstrated an ability to predict the risk of both disease and survival in pre-cancerous tissue, 

including brain tissue [470-472]. These findings provide a rationale to evaluate whether an association 

exists between these epigenetic markers and age at diagnosis in glioma and subsequently whether 

DNAm can act as a prognostic marker.  

Prior epidemiological studies have reported that longer leukocyte telomere length is linked to 

an increased risk of glioma [222, 461]. Here, I provide evidence to further elucidate the molecular 
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mechanism between telomere length, DNAm and glioma risk. Contrary to previous studies, I observed 

evidence that DNAm influencing the CpG sites (cg01561092, cg05926943) decreased glioma risk and 

increased leukocyte telomere length. The conflicting correlation could be a result of the complexity of 

the association underlying glioma development. A noteworthy concern is that since methylation was 

studied in blood tissue, which is unlikely to accurately proxy DNAm in the brain, the associations may 

be biased by confounding by tissue heterogeneity.  

There was little evidence to suggest the glioma related traits influence cancer development 

through DNAm. These null results could reflect the fact that DNAm is not a causal mediator between 

these traits and glioma onset, or it could be a consequence of this MR study being underpowered 

since the variance explained by the IV for the trait was limited. In an attempt to reduce weak 

instrument bias, I obtained the summary data to proxy the glioma related traits from GWAS with a 

large sample size to improve the reliability of the causal estimates and I only used SNPs with an F 

statistic greater than 10.   

An important consideration in the interpretation of this analysis is explained in detail by Min 

JL et al 2020 [361]. The blood measured mQTL data utilised in this chapter, obtained from the GoDMC 

data set [361], cannot be regarded as mediating the genetic association to the trait even when there 

is colocalization evidence of a shared genetic variant. Rather, when DNAm shows evidence of 

colocalizing with a complex trait, such as glioma and telomere length, then this is likely due to a 

common cause. Therefore, despite CpG sites showing evidence of colocalization, it is possible that the 

second instrumental variable assumption has been violated, as there could be a common cause for 

both DNAm and glioma risk. To establish if the CpG sites identified here are truly implicated in glioma 

onset more detailed analyses are required to triangulate evidence and to fully understand the 

mechanistic pathways. 

Another limitation of this study is the fact that I used single-instrument MR to examine causal 

relationships and consequently was not properly able to appraise possible horizontal pleiotropic 
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effects. I took measures to minimise this possibility: instruments were limited to cis-mQTLs as trans-

mQTLs are more likely to have effects on methylation and glioma risk via distinct mechanisms; and 

colocalization techniques were implemented to test whether the putative causal variant is shared by 

the exposure (e.g., risk factor or DNAm) and the outcome (e.g., glioma or DNAm) [241, 329, 473] thus 

increasing the probability that the two traits have a shared causal mechanism [241, 474].  

Despite these limitations, this analysis has numerous strengths, including the use of two-

sample MR to examine the causal role of DNAm in glioma risk by exploiting a vast epigenetic resource 

and the largest glioma GWAS. Thus, leading to increased statistical power and precision of effect 

estimates. Furthermore, to ensure IVs were valid, genetic instruments were constructed using strict 

inclusion criteria and quality control steps were undertaken. For example, only cis-variants were 

included and instrument strength was checked. In addition, the orientation of the causal effect was 

inferred to reduce the likelihood of reverse causation.  
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4.6 Conclusion  

In this large-scale ‘omics’ study I examined if DNAm causally influences glioma onset and 

estimated the causal role of DNAm as a mediator between putative glioma related traits and glioma 

onset. This chapter found little evidence to support a mediating role of DNAm in the relationship of 

triglycerides, LDL cholesterol, allergic disease, childhood obesity, telomere length and alcohol 

consumption with glioma risk. The identification of novel associations between DNAm at 3 CpG sites 

(cg01561092, cg05926943, cg01584448) with glioma and subtype risk, highlights the possibility that 

DNAm could be used to develop preventative or therapeutic strategies. As the findings from this 

chapter are based on genetic variants derived from blood tissue, which are susceptible to confounding 

by cell composition, further research should involve brain tissue to enhance the detection of causally 

relevant CpG sites and assist with establishing causal mechanisms.   

4.7 Next Chapter 

In Chapter 5 I intend to further dissect the underlying molecular mechanisms underpinning 

glioma onset. I plan to utilise genetic variants to proxy gene expression in both brain and blood tissue 

and to perform transcriptome-wide two-sample MR analyses to evaluate the role of tissue-specific 

differential gene expression in overall and subtype-specific glioma risk.  
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5 Chapter 5: Mendelian randomization to determine 
tissue-specific regulatory mechanisms in glioma 
development. 
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5.1 Abstract 

Numerous genetic risk variants identified in glioma genome-wide association studies are from 

non-protein coding regions and therefore the functional relevance of many of these genetic risk 

variants remain unclear. Furthermore, it is likely that differential gene expression associates with 

glioma risk in a tissue-specific manner.  

A Mendelian randomization (MR) framework was used to establish if differential gene 

expression within blood and brain tissue influenced overall glioma risk and risk stratified by 

histological subtype. Colocalization was subsequently applied as a sensitivity analysis to assess genetic 

confounding, thus achieving additional insights into whether changes in gene expression are involved 

in glioma susceptibility.  

MR assessed the association between differential gene expression of 6,416 genes in brain tissue 

and 9,040 genes in blood tissue with glioma and subtype risk. MR evidence indicated that differential 

gene expression of 29 genes associated with glioma or subtype risk (False discovery rate [FDR] < 0.05). 

Colocalization provided evidence against genetic confounding and suggested that differential gene 

expression of 18 genes in brain tissue, 2 of which were novel (CCDC88B and ESYT3) in glioma risk, and 

glioma or histological stratified subtype were driven by the same genetic variant. Further evidence 

against genetic confounding was provided for 7 of the genes with MR evidence of an association with 

glioma in blood tissue. The tissue-specific MR analyses highlighted that gene-glioma associations vary 

depending upon if the gene is measured in blood or brain tissue.   
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5.2 Introduction  

5.2.1 Gene expression and glioma risk  

 Recent genome-wide association studies (GWAS) have successfully identified 27 genetic loci 

that alter glioma risk [337, 475]. Prior studies have identified several functional possibilities for some 

glioma genetic risk loci [476, 477]. For instance, for the glioma risk loci PHLDB1, 41 regulatory SNPs 

within the locus were identified. Subsequent experiments within human glioma cell lines found that 

knockdown of PHLDB1 increased cell death [476]. However, translation of the genetic risk loci into a 

greater understanding of molecular mechanisms has been limited, as most associations are from 

variation in non-coding genetic regions and their functional importance remains uncertain.  

5.2.2 Genetics of gene expression  
 A considerable proportion of the variation in gene expression can be explained by variation 

within the germline genome. These variants are known as expression quantitative trait loci (eQTL). 

eQTLs can influence the expression of genes in close proximity (cis-eQTL) to them or the expression of 

genes further away (trans-eQTL).  

eQTLs can be used to instrument differential gene expression in a Mendelian randomization 

(MR) setting to allow for an improved understanding of gene regulatory pathways associated with 

disease risk. There are several ways in which an eQTL can associate with glioma risk. One way is via 

vertical pleiotropy, whereby the eQTL directly and causally influences gene expression which in turn 

influences glioma risk. Alternatively, the true causal SNP that associates with gene expression is in 

linkage disequilibrium (LD) with the causal SNP that independently influences the risk of glioma; this 

is also known as genomic confounding. A second way is via horizontal pleiotropy, where the same SNP 

affects both glioma risk and gene expression but via independent pathways. Lastly, the association 

may arise via reverse causation, where the presence of glioma influences differential gene expression 

indexed by the SNP. These different scenarios are displayed in Figure 5-1.  
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Figure 5-1 – The pathways by which differential gene expression can associate with glioma risk. Vertical pleiotropy, the 
genetic variant (single nucleotide polymorphism [SNP]) influences glioma, mediated by gene expression; Linkage 
disequilibrium (LD), the SNP that influences gene expression is in LD with a SNP that influences glioma; Reverse causation, 
the SNP influences glioma which influences gene expression; Horizontal pleiotropy, The SNP influences both gene expression 
and glioma via two independent biological pathways.  

A combined MR and colocalization approach can be utilised to assess the more likely 

explanation for the observed association. MR studies make use of germline genetic data which are 

fixed at birth and tend to be randomly distributed with respect to most human traits in the general 

population. The fixed nature of germline genotypes reduces the susceptibility to reverse causation, 

and Mendel’s law of independent assortment leads to the random distribution of genes which reduces 

the likelihood of confounding. Causal inference based on observed associations from MR can be 

strengthened through use of colocalization analysis which assesses the probability that two traits (e.g., 

gene expression and glioma risk) share a causal variant at a particular genetic locus, indicating a shared 

aetiology between the two traits [326]. Nevertheless, a key limitation to using eQTL data in an MR 

setting is the difficulty in determining the presence of horizontal pleiotropy. Many independent SNPs 

are required to model horizontal pleiotropy; however, differential gene expression is commonly 

instrumented by a single SNP. A further difficulty in molecular epidemiology is determining how 

associations between differential gene expression and an outcome, such as glioma, are dependent 
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upon the tissue analysed. Thus, here I use MR to explore whether associations are dependent upon 

the tissue analyses to highlight likely functionally relevant genes and tissues that contribute to glioma 

risk.  

5.2.3 Chapter aims. 

Within this chapter, genetic data from blood and brain tissue were utilised to apply a 

hypothesis-free MR approach to establish if differential gene expression causes glioma and if these 

associations were dependent on the tissue studied. To investigate this, I appraised causality between 

gene expression and glioma risk using eQTLs derived from brain and blood tissue. It was not possible 

to properly appraise the presence of horizontal pleiotropy so inferences about potential causal genes 

are tentative.  
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5.3 Methods  

5.3.1 Glioma genetic association data  

For this MR and colocalization analysis, summary genetic association data were attained from 

a GWAS meta-analysis of 12,488 glioma cases and 18,190 controls. In addition, data were obtained 

for the following histological subtypes of glioma: glioblastoma (6,191 cases and 18,190 controls) and 

non-glioblastoma (5,819 cases and 18,190 controls) [339]. All analyses were restricted to individuals 

of European ancestry. Additional information on statistical analyses, imputation and quality control 

measures for each study, and the meta-analysis can be found in the original published paper [339] and 

is presented in summary form in Chapter 2. 

5.3.2 Instrument construction  

To develop genetic instruments to proxy blood-specific differential gene expression, I 

obtained summary genetic association data from a GWAS of gene expression in blood tissue from the 

eQTLGen consortium (n=31,684) (https://www.eqtlgen.org/) [363]. Most samples were of European 

ancestry, though a small subset of studies included samples of non-European ancestry, i.e., 1,404 

Bangladeshi, 175 Arabs and Amazighs and 115 Chinese. In addition, I obtained summary genetic 

association data from a meta-analysis of data on 13 brain tissues from samples of European ancestry 

in GTEx v8 (n=1,194)[362] to proxy brain-specific differential gene expression. Further details on the 

enrolment, quality control measures for each GWAS and the meta-analysis can be found in Chapter 2. 

In the instrument construction, a cis-eQTL was defined as any SNP within ±250kb of the 

genomic coordinates of the gene of interest, that associated with gene expression of the gene of 

interest at P<5x10-6. Furthermore, LD clumping was performed to reduce the number of correlated 

cis-eQTLs, genetic variants with an r2 <0.001 were removed. PLINK [404] was used to clump the SNPs 

according to LD (r2<0.001) using 1000 genomes Phase 3 CEU as the reference panel [478]. The effect 

estimates obtained from the GWAS were expressed as one SD change in gene expression per risk allele 

with the corresponding standard error. 

https://www.eqtlgen.org/
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 Before MR could be performed, the gene expression and glioma GWAS datasets were 

harmonised to ensure the effect allele corresponded to the gene expression increasing allele in both 

datasets. If an instrument (or instrumental SNPs) were missing from the glioma GWAS, and a proxy 

was not available (r2 > 0.8), the SNP was dropped from the analysis.  

5.3.3 Mendelian randomization analysis 

In the MR analyses, for genetic instruments that consisted of 1 SNP, the Wald ratio (βGD/βGP) 

was used to generate causal estimates and the delta method [479] was used to approximate standard 

errors. The Wald ratios were combined into a single causal estimate using a meta-analysis method for 

cases where multiple independent (r2 <0.001)  instruments existed [313]. Results are expressed as 

odds ratios (OR) and 95% confidence intervals (CI) per 1 SD increase in genetically proxied gene 

expression.   

5.3.4 Sensitivity analyses  

MR can produce biased causal effect estimates of differential gene expression with glioma risk 

if the following MR assumptions are not satisfied: (i) the genetic variant is causally associated with 

expression of the relevant gene (the “relevance” assumption); (ii) there are no common causes of the 

genetic variant-outcome association (the “exchangeability” assumption); and (iii) the genetic variant 

only associates with the outcome exclusively through its effect on gene expression (the “exclusion 

restriction” assumption).  

To test the “relevance” assumption the proportion of variance in gene expression explained 

by the IV (r2) and by the F-statistic was estimated. The F-statistic measures instrument strength and 

evaluates the likelihood that the MR estimate is influenced by weak instrument bias. As a convention, 

an F-statistic >10 is used to indicate minimal weak instrument bias [480].  

The “exchangeability” assumption was tested by performing colocalization as a sensitivity 

analysis to establish whether the genetic variant associated with differential gene expression was the 

same genetic variant influencing glioma risk. To test for colocalization, SNPs from a ±250kBP window 

were extracted around the instrumented SNP(s) from both the glioma GWAS and the gene expression 
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GWAS. The Bayesian colocalization method requires prior probabilities, the default is p1 = 1e-4, p2 = 

1e-4, p12 = 1e-5, which are combined with the probability for five configurations [327]. The five 

hypotheses are: H0: No association with either trait; H1: Association to only trait 1; H2: Association to 

only trait 2; H3: Distinct causal variants, a variant is associated with trait 1 and a different variant is 

associated with trait 2; H4: Shared causal variant, a single variant is associated with both trait 1 and 

trait 2. If colocalization provides evidence for hypothesis H4 (posterior probability > 80%) this indicates 

that the two traits are colocalized [241] and both traits have a shared causal SNP [327]. The 

colocalization analysis was conducted using the “coloc” R package [328]. Colocalization can produce 

unreliable results if there are several neighbouring association signals. To increase the reliability of 

causal inference from the colocalization analysis, I implemented pairwise conditional and 

colocalization (PWCoCo) analysis [329]. Similarly, a posterior probability >80% for hypothesis H4 

provides evidence that two traits are colocalized. For the purposes of these analyses, I designated 

posterior probability >0.8 for H4 as “strong” and 0.7> posterior probability for H4 <0.8 as “suggestive” 

evidence. 

As discussed in Chapter 2, a key source of bias in MR analyses is from horizontal pleiotropy 

[211, 217], if there is a causal relationship between the genetic variant and glioma but the relationship 

does not occur through the hypothesised gene. Thus, for the genes instrumented by multiple 

independent SNPs, sensitivity analyses, which typically require large numbers of independent 

instruments, were performed using the weighted median estimator (WME), the mode-based 

estimator (MBE) and MR-Egger regression [251, 397, 398]. A consistent effect across the multiple 

methods would give the strongest evidence for a causal effect and suggest that the results are not 

biased by horizontal pleiotropy. However, it was not possible to perform this sensitivity analysis for 

most gene expression traits, due to the small number of independent instruments available per gene. 

Thus, the “exclusion restriction” assumption could have been violated by horizontal pleiotropy and 

therefore causal conclusions presented here are tentative.  
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5.3.5 Mendelian randomization effect estimate  

To account for multiple testing across analyses, reported results are MR effect estimates that 

met the false discovery rate (FDR) threshold, with P-adjusted<0.05 designated as “strong” evidence. 

The results from the sensitivity analysis for genomic confounding [458], H4>0.8 designated as “strong” 

and 0.7>H4<0.8 as “suggestive” evidence, to support shared causality, are reported separately to the 

MR findings. All MR analyses were conducted using the “TwoSampleMR” package in R studio (version 

4.1.0) using the computational facilities of the Advanced Computing Research Centre, University of 

Bristol (http://www.bristol.ac.uk/acrc/).  

5.3.6 Comparison with protein levels 

Additional evidence of a functional effect of the genes identified would be given if the eQTL 

used as a proxy in the MR analysis also influenced the corresponding protein. Thus, SNPs used as eQTLs 

plus all SNPs in high LD with the index SNPs (r2 => 0.8) were looked up in the following protein 

quantitative trait loci (pQTL) databases: brain pQTL data from Religious Orders Study/Memory and 

Aging Project (ROS/MAP) Brain pQTL in controls only, and Banner Brain pQTL [481]. The effect size 

and p-values for the pQTL in specific tissues were documented.  
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5.4 Results  

F-statistic calculations indicated that all genes examined in the MR framework had an F-

statistic > 10 (Appendix 3.1) which suggests that the MR estimate was less likely to be affected by 

weak instrument bias. 

5.4.1 Mendelian randomization: genetically proxied brain-specific gene expression and glioma 

risk. 

To account for multiple testing an FDR correction (FDR P<0.05) was applied to the 6,146 MR 

associations between differential gene expression in brain tissue with glioma risk. P-adjusted<0.05 

was designated as “strong” evidence of an association. MR provided evidence that differential 

expression of 21 genes associated with glioma risk. All 21 genes were instrumented by a single eQTL. 

Results for the MR analysis are provided in Table 5-1. The full MR results can be found in Appendix 

3.2. 
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Gene OR (95% CI) p-adjusted  

STMN3 0.39 (0.34-0.45) 4.12E-35 

CDKN2B 0.41 (0.34-0.48) 6.48E-22 

EGFR 0.55 (0.49-0.62) 1.35E-19 

HEATR3-AS1 1.32 (1.22-1.44) 6.76E-08 

HEATR3 1.12 (1.08-1.16) 5.92E-07 

MDM4 0.75 (0.67-0.83) 4.53E-05 

JAK1 1.11 (1.06-1.15) 7.80E-04 

GALNT6 1.18 (1.10-1.27) 3.35E-03 

RRM1 1.22 (1.11-1.34) 1.32E-02 

RAVER2 1.10 (1.05-1.15) 1.78E-02 

SEC23A 1.28 (1.14-1.44) 2.52E-02 

STN1 0.72 (0.61-0.84) 2.80E-02 

ESYT3 0.68 (0.56-0.82) 3.34E-02 

PICK1 1.30 (1.14-1.48) 3.17E-02 

BAIAP2L2 0.81 (0.73-0.90) 2.96E-02 

LMF1 1.09 (1.04-1.13) 3.04E-02 

DNA2 1.14 (1.07-1.22) 3.21E-02 

CD14 0.77 (0.67-0.88) 3.14E-02 

SLC25A16 0.86 (0.79-0.93) 3.00E-02 

TGFA 1.27 (1.13-1.43) 3.01E-02 

TNFSF13 1.26 (1.12-1.41) 3.89E-02 

Table 5-1 - Mendelian randomization associations between genetically proxied brain gene expression and risk of glioma 
that met the false discovery rate threshold (p-adjusted <0.05). Associations represent the OR (95% CI) per SD increase in 
genetically proxied gene expression. 

Next, two-sample MR was implemented to test the association between gene expression with 

glioblastoma risk (6,191 cases and 18,190 controls). In the analyses of glioblastoma, using the Wald 

ratio, differential expression of 20 genes were associated with glioblastoma risk after applying an FDR 

correction (FDR P<0.05) (Table 5-2) (Full results in Appendix 3.3).  
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Gene OR (95% CI) p-adjusted 

STMN3 0.29 (0.24-0.34) 9.12E-41 

EGFR 0.44 (0.38-0.51) 4.00E-24 

CDKN2B 0.32 (0.26-0.40) 4.24E-23 

HEATR3-AS1 1.44 (1.30-1.59) 8.43E-09 

HEATR3 1.15 (1.11-1.21) 1.14E-07 

PICK1 1.62 (1.38-1.90) 2.05E-06 

BAIAP2L2 0.69 (0.61-0.78) 8.78E-06 

JAK1 1.15 (1.10-1.21) 9.73E-06 

GALNT6 1.26 (1.16-1.38) 1.53E-04 

RAVER2 1.14 (1.08-1.21) 7.44E-04 

MICALL1 0.69 (0.59-0.80) 1.20E-03 

PPP1R14B 1.32 (1.16-1.50) 1.03E-02 

RRM1 1.26 (1.13-1.40) 1.82E-02 

HEXD 1.23 (1.11-1.36) 2.97E-02 

TGFA 1.34 (1.16-1.56) 3.42E-02 

CCDC88B 1.10 (1.05-1.15) 3.33E-02 

LMF1 1.11 (1.05-1.17) 3.18E-02 

AMT 0.88 (0.82-0.94) 3.37E-02 

MTHFSD 1.32 (1.15-1.52) 3.53E-02 

ESYT3 0.64 (0.50-0.80) 4.18E-02 

Table 5-2 - Mendelian randomization associations between genetically proxied brain gene expression and risk of 
glioblastoma that met the false discovery rate threshold (p-adjusted<0.05). Associations represent the OR (95% CI) per SD 
increase in genetically proxied gene expression. 

In the analyses of non-glioblastoma (5,819 cases and 18,190 controls), using the Wald ratio to 

derive MR estimates, differential expression of 8 genes was associated with non-glioblastoma risk 

after applying an FDR correction (FDR P<0.05) (Table 5-3). The full results from the MR analysis are 

presented in Appendix 3.4.  
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Gene OR (95% CI) p-adjusted 

STMN3 0.57 (0.47-0.69) 1.33E-05 

CDKN2B 0.52 (0.41-0.65) 1.99E-05 

MDM4 0.69 (0.60-0.79) 2.32E-04 

TMEM25 1.11 (1.07-1.16) 1.21E-03 

IFT46 1.13 (1.08-1.18) 9.69E-04 

EGFR 0.67 (0.57-0.79) 1.41E-03 

STN1 0.61 (0.50-0.76) 4.03E-03 

SEC23A 1.40 (1.20-1.63) 1.79E-02 

Table 5-3 - Mendelian randomization associations between genetically proxied brain gene expression and risk of non-
glioblastoma that met the false discovery rate threshold (p-adjusted<0.05). Associations represent the OR (95% CI) per SD 
increase in genetically proxied gene expression. 

As a sensitivity analysis for genomic confounding, colocalization was implemented to 

determine the probability that differential gene expression and glioma risk were driven by a shared 

causal variant at each locus. In the colocalization analysis, there was strong evidence of colocalization 

(H4 > 0.8) between 10 genes and glioma risk (Table 5-4), 13 genes and glioblastoma risk (Table 5-5), 5 

genes and non-glioblastoma risk (Table 5-6). 
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Gene OR (95% CI) p-adjusted  H4 

STMN3 0.39 (0.34-0.45) 4.12E-35 8.98E-21 

CDKN2B 0.41 (0.34-0.48) 6.48E-22 0.316 

EGFR 0.55 (0.49-0.62) 1.35E-19 0.0794 

HEATR3-AS1 1.32 (1.22-1.44) 6.76E-08 0.943 

HEATR3 1.12 (1.08-1.16) 5.92E-07 0.950 

MDM4 0.75 (0.67-0.83) 4.53E-05 0.924 

JAK1 1.11 (1.06-1.15) 7.80E-04 0.908 

GALNT6 1.18 (1.10-1.27) 3.35E-03 0.996 

RRM1 1.22 (1.11-1.34) 1.32E-02 0.891 

RAVER2 1.10 (1.05-1.15) 1.78E-02 0.126 

SEC23A 1.28 (1.14-1.44) 2.52E-02 0.943 

STN1 0.72 (0.61-0.84) 2.80E-02 0.940 

ESYT3 0.68 (0.56-0.82) 3.34E-02 0.814 

PICK1 1.30 (1.14-1.48) 3.17E-02 0.0466 

BAIAP2L2 0.81 (0.73-0.90) 2.96E-02 0.0461 

LMF1 1.09 (1.04-1.13) 3.04E-02 3.68E-08 

DNA2 1.14 (1.07-1.22) 3.21E-02 2.59E-01 

CD14 0.77 (0.67-0.88) 3.14E-02 0.920 

SLC25A16 0.86 (0.79-0.93) 3.00E-02 2.59E-01 

TGFA 1.27 (1.13-1.43) 3.01E-02 1.94E-01 

TNFSF13 1.26 (1.12-1.41) 3.89E-02 1.325x10-6 

Table 5-4 – Colocalization results between gene expression and glioma risk. The posterior probability from colocalization 
for the H4 configuration for genes that showed Mendelian randomization evidence (FDR < 0.05) of an association. 
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Gene OR (95% CI) p-adjusted H4 

STMN3 0.29 (0.24-0.34) 9.12E-41 0.956 

EGFR 0.44 (0.38-0.51) 4.00E-24 9.36E-28 

CDKN2B 0.32 (0.26-0.40) 4.24E-23 0.539 

HEATR3-AS1 1.44 (1.30-1.59) 8.43E-09 0.955 

HEATR3 1.15 (1.11-1.21) 1.14E-07 0.963 

PICK1 1.62 (1.38-1.90) 2.05E-06 0.881 

BAIAP2L2 0.69 (0.61-0.78) 8.78E-06 0.726 

JAK1 1.15 (1.10-1.21) 9.73E-06 0.917 

GALNT6 1.26 (1.16-1.38) 1.53E-04 0.998 

RAVER2 1.14 (1.08-1.21) 7.44E-04 0.114 

MICALL1 0.69 (0.59-0.80) 1.20E-03 0.544 

PPP1R14B 1.32 (1.16-1.50) 1.03E-02 0.896 

RRM1 1.26 (1.13-1.40) 1.82E-02 0.847 

HEXD 1.23 (1.11-1.36) 2.97E-02 0.0228 

TGFA 1.34 (1.16-1.56) 3.42E-02 0.392 

CCDC88B 1.10 (1.05-1.15) 3.33E-02 0.896 

LMF1 1.11 (1.05-1.17) 3.18E-02 0.787 

AMT 0.88 (0.82-0.94) 3.37E-02 0.644 

MTHFSD 1.32 (1.15-1.52) 3.53E-02 0.876 

ESYT3 0.64 (0.50-0.80) 4.18E-02 0.839 

Table 5-5 - Colocalization results between gene expression and glioblastoma risk. The posterior probability from 
colocalization for the H4 configuration for genes that showed Mendelian randomization evidence (FDR < 0.05) of an 
association. 

Gene OR (95% CI) p-adjusted H4 

STMN3 0.57 (0.47-0.69) 1.33E-05 0.956 

CDKN2B 0.52 (0.41-0.65) 1.99E-05 0.443 

MDM4 0.69 (0.60-0.79) 2.32E-04 0.882 

TMEM25 1.11 (1.07-1.16) 1.21E-03 2.66E-33 

IFT46 1.13 (1.08-1.18) 9.69E-04 5.34E-32 

EGFR 0.67 (0.57-0.79) 1.41E-03 0.900 

STN1 0.61 (0.50-0.76) 4.03E-03 0.947 

SEC23A 1.40 (1.20-1.63) 1.79E-02 0.964 

Table 5-6 - Colocalization results between gene expression and non-glioblastoma risk. The posterior probability from 
colocalization for the H4 configuration for genes that showed Mendelian randomization evidence (FDR < 0.05) of an 
association. 

5.4.2 Brain-specific differential gene expression grouping  

In summary, of the 6,146 genes in brain tissue examined, differential expression of 18 genes 

showed both MR evidence of an association with glioma risk (FDR P<0.05), and colocalization between 

gene expression and glioma risk (Figure 5-2). All 18 genes were instrumented by a single SNP and 

therefore further sensitivity analyses to appraise horizontal pleiotropy could not be conducted. 
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Expression of seven genes, (STMN3, STN1, EGFR, ESYT3, MDM4, CD14, BAIAP2L2) showed inverse 

associations with glioma or subtype risk. Expression of the remaining 11 genes (CCDC88B, LMF1, JAK1, 

HEATR3, RRM1, GALNT6, PPP1R14B, SEC23A, HEATR3-AS1, PICK1, MTHFSD) were associated with an 

increase in glioma or subtype risk.  
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Figure 5-2 - Forest plot of the Mendelian randomization association with supportive colocalization evidence. Associations 
represent the OR (95% CI) per SD increase in genetically proxied gene expression. 

 

5.4.3 Mendelian randomization: genetically proxied blood-specific gene expression with glioma 

and subtype risk. 

In addition, two-sample MR was used to investigate the potential causal effect of differential 

gene expression within blood tissue at 9,040 genes and glioma risk. All genes had an F-statistic of >10 
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(Appendix 3.5). After applying an FDR correction (FDR P<0.05) MR provided evidence that differential 

gene expression of 12 genes was associated with glioma risk (Table 5-7), 9 genes were associated with 

glioblastoma risk (Table 5-8), and 11 genes were associated with non-glioblastoma risk (Table 5-9). 

Full MR results can be found in Appendix 3.6, 3.7 and 3.8.  

Gene Method OR (95% CI) p-adjusted 

TP53 Wald ratio 0.13 (0.09-0.18) 2.34E-32 

LINCO1359 Wald ratio 0.26 (0.16-0.40) 2.33E-05 

ATP1B2 Wald ratio 1.43 (1.27-1.61) 2.85E-05 

JAK1 Wald ratio 3.18 (1.98-5.11) 5.65E-03 

TMEM184B Wald ratio 0.69 (0.59-0.80) 5.30E-03 

CLPTM1L Wald ratio 0.41 (0.28-0.59) 5.18E-03 

LMF1 Wald ratio 1.30 (1.16-1.45) 7.50E-03 

SOX8 Inverse variance weighted 0.71 (0.61-0.82) 9.43E-03 

HEATR3 Inverse variance weighted 1.20 (1.11-1.29) 1.07E-02 

C11orf65 Wald ratio 0.35 (0.22-0.56) 1.19E-02 

PANK4 Wald ratio 0.72 (0.62-0.83) 1.46E-02 

POLR2A Wald ratio 0.47 (0.34-0.67) 1.89E-02 

Table 5-7 - Mendelian randomization associations between genetically proxied blood tissue gene expression and risk of 
glioma that met the false discovery rate threshold (p-adjusted<0.05). Associations represent the OR (95% CI) per SD increase 
in genetically proxied gene expression. 

Gene Method OR (95% CI) p-adjusted 

TP53 Wald ratio 0.11 (0.08-0.17) 1.54E-22 

LINCO1359 Wald ratio 0.17 (0.10-0.30) 3.03E-06 

JAK1 Wald ratio 4.49 (2.51-8.02) 1.78E-03 

HEATR3 Inverse variance weighted 1.28 (1.16-1.41) 1.75E-03 

MPG Wald ratio 2.29 (1.65-3.18) 1.94E-03 

CLPTM1L Wald ratio 0.33 (0.21-0.53) 5.01E-03 

RNF123 Wald ratio 2.20 (1.54-3.15) 2.70E-02 

ATP1B2 Wald ratio 1.38 (1.19-1.60) 2.91E-02 

PLA2G6 Wald ratio 2.77 (1.72-4.47) 3.70E-02 

Table 5-8 - Mendelian randomization associations between genetically proxied blood tissue gene expression and risk of 
glioblastoma that met the false discovery rate threshold (p-adjusted<0.05). Associations represent the OR (95% CI) per SD 
increase in genetically proxied gene expression. 
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Gene Method OR (95% CI) p-adjusted 

TP53 Wald ratio 0.11 (0.07-0.17) 4.25E-19 

CXCR5 Wald ratio 13.76 (6.76-27.98) 3.12E-09 

AKT3 Wald ratio 0.42 (0.30-0.58) 6.83E-04 

IFT46 Wald ratio 1.76 (1.41-2.19) 2.02E-03 

POLR2A Wald ratio 0.32 (0.21-0.51) 2.08E-03 

ATP1B2 Wald ratio 1.49 (1.27-1.75) 1.79E-03 

SOX8 Inverse variance weighted 0.64 (0.53-0.78) 1.95E-02 

MYLK4 Inverse variance weighted 0.75 (0.66-0.86) 2.08E-02 

MERTK Wald ratio 2.70 (1.72-4.25) 2.45E-02 

KLHL32 Wald ratio 3.26 (1.88-5.66) 2.91E-02 

LMF1 Wald ratio 1.35 (1.17-1.57) 4.84E-02 

Table 5-9 - Mendelian randomization associations between genetically proxied blood tissue gene expression and risk of 
non-glioblastoma that met the false discovery rate threshold (p-adjusted<0.05). Associations represent the OR (95% CI) per 
SD increase in genetically proxied gene expression. 

Colocalization was performed to assess the probability that differential gene expression and 

glioma risk were driven by a shared causal variant at each locus. In the colocalization analysis, there 

was strong evidence of colocalization (H4 > 0.8) between 4 genes and glioma risk (Table 5-10), 4 genes 

and glioblastoma risk (Table 5-11), and 2 genes and non-glioblastoma risk (Table 5-12).  

Gene OR (95% CI) p-adjusted H4 

TP53 0.13 (0.09-0.18) 2.34E-32 0.998 

LINCO1359 0.26 (0.16-0.40) 2.33E-05 249E-03 

ATP1B2 1.43 (1.27-1.61) 2.85E-05 9.036E-16 

JAK1 3.18 (1.98-5.11) 5.65E-03 1.15E-03 

TMEM184B 0.69 (0.59-0.80) 5.30E-03 0.0514 

CLPTM1L 0.41 (0.28-0.59) 5.18E-03 3.992E-07 

LMF1 1.30 (1.16-1.45) 7.50E-03 0.118 

SOX8 0.71 (0.61-0.82) 9.43E-03 4.77E-03 

HEATR3 1.20 (1.11-1.29) 1.07E-02 0.988 

C11orf65 0.35 (0.22-0.56) 1.19E-02 0.916 

PANK4 0.72 (0.62-0.83) 1.46E-02 0.981 

POLR2A 0.47 (0.34-0.67) 1.89E-02 1.792E-13 

Table 5-10 - Colocalization results between gene expression and glioma risk. The posterior probability from colocalization 
for the H4 configuration for genes that showed Mendelian randomization evidence (FDR<0.05) of an association. 
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Gene OR (95% CI) p-adjusted H4 

TP53 0.11 (0.08-0.17) 1.54E-22 0.999 

LINCO1359 0.17 (0.10-0.30) 3.03E-06 1.48E-03 

JAK1 4.49 (2.51-8.02) 1.78E-03 9.01E-04 

HEATR3 1.28 (1.16-1.41) 1.75E-03 0.991 

MPG 2.29 (1.65-3.18) 1.94E-03 0.948 

CLPTM1L 0.33 (0.21-0.53) 5.01E-03 3.993E-07 

RNF123 2.20 (1.54-3.15) 2.70E-02 0.915 

ATP1B2 1.38 (1.19-1.60) 2.91E-02 1.504E-15 

PLA2G6 2.77 (1.72-4.47) 3.70E-02 0.0556 

Table 5-11 - Colocalization results between gene expression and glioblastoma risk. The posterior probability from 
colocalization for the H4 configuration for genes that showed Mendelian randomization evidence (FDR<0.05) of an 
association. 

Gene OR (95% CI) p-adjusted H4 

TP53 0.11 (0.07-0.17) 4.25E-19 0.999 

CXCR5 13.76 (6.76-27.98) 3.12E-09 0.0188 

AKT3 0.42 (0.3-0.58) 6.83E-04 0.531 

IFT46 1.76 (1.41-2.19) 2.02E-03 3.744E-32 

POLR2A 0.32 (0.21-0.51) 2.08E-03 1.46E-11 

ATP1B2 1.49 (1.27-1.75) 1.79E-03 1.700E-11 

SOX8 0.64 (0.53-0.78) 1.95E-02 2.29E-03 

MYLK4 0.75 (0.66-0.86) 2.08E-02 0.993 

MERTK 2.70 (1.72-4.25) 2.45E-02 4.00E-04 

KLHL32 3.26 (1.88-5.66) 2.91E-02 2.35E-03 

LMF1 1.35 (1.17-1.57) 4.84E-02 0.0412 

Table 5-12 - Colocalization results between gene expression and non-glioblastoma risk. The posterior probability from 
colocalization for the H4 configuration for genes that showed Mendelian randomization evidence (FDR<0.05) of an 
association. 

5.4.4 Sensitivity analysis  

There were 2 genes from the MR analyses of gene expression in blood tissue that had >1 eQTL 

available to use as genetic instruments. Therefore, it was possible to conduct additional sensitivity 

analyses for horizontal pleiotropy for these 2 genes. Differential expression of HEATR3 and MYLK4 

were each instrumented by 3 genetic variants. The IVW estimate showed that increased levels of 

genetically proxied HEATR3 was associated with an increased risk of glioma and glioblastoma (OR 1.20, 

95% CI 1.11-1.29, p-adjusted 1.07×10− 2 and, OR 1.28, 95% CI 1.16-1.41, p-adjusted 1.75×10− 3, 

respectively). The IVW estimate showed that increased levels of genetically proxied MYLK4 were 

associated with a decreased risk of non-glioblastoma (OR 0.75, 95% CI 0.66-0.86, p-adjusted 

2.08×10− 2). MR Egger could not be applied as there were only 3 variants which were all from the same 
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genetic region. The method has very limited power when the number of instruments is so low. To 

allow relaxation of the exclusion restriction MR assumption by accounting for any effect of outlying 

variants, I used the weighted mode and weighted median (Table 5-13). For both genes, the weighted 

median estimate agreed with the IVW estimate. However, the weighted mode and the weighted 

median method were unlikely to be very informative as the number of independent instruments were 

limited.  

Gene Outcome  Method OR (95% CI) p-adjusted 

HEATR3 Glioma Weighted median 1.19 (1.10-1.29) 1.97E-02 

HEATR3 Glioma Weighted mode 1.19 (1.09-1.29) 1.04E+00 

HEATR3 Glioblastoma Weighted median 1.19 (1.10-1.29) 1.97E-02 

HEATR3 Glioblastoma Weighted mode 1.19 (1.09-1.29) 1.04E+00 

MYLK4 Non- glioblastoma Weighted median 0.75 (0.66-0.86) 2.08E-02 

MYLK4 Non- glioblastoma Weighted mode 0.74 (0.64-0.84) 1.15E+00 

Table 5-13 – Mendelian Randomization associations from sensitivity analyses. Associations represent the OR (95% CI) per 
SD increase in genetically proxied gene expression. 

 To further investigate the presence of horizontal pleiotropy, I performed the Wald ratio 

analyses for each instrument separately to compare the MR estimate for each SNP (Figure 5-3). For 

the association of MYLK4 expression with non-glioblastoma risk, only one MR Wald ratio result 

(rs2038760) clearly indicates an association with non-glioblastoma, and the other two are null, 

providing good evidence for horizontal pleiotropy. For the association of HEATR3 expression with 

glioma and glioblastoma, 2 instruments (rs3915616 and rs9922332) provide very similar results, 

providing evidence against horizontal pleiotropy. On the other hand, for the third instrument 

(rs116915980), the MR Wald ratio result indicates a null association with glioma, suggesting the 

presence of horizontal pleiotropy. Therefore, I repeated the MR analyses for MYLK4 expression and 

HEATR3 expression with glioma risk excluding the instruments that were likely biased by horizontal 

pleiotropy (Table 5-14).  
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Figure 5-3 - Forest plot of the Wald ratio association for each instrument separately for genes with >1 eQTL available. 
Associations represent the OR (95% CI) per SD increase in genetically proxied gene expression for each instrument. 
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Gene Method Outcome OR (95% CI) p-value 

HEATR3 Inverse variance weighted Glioma 1.19 (1.10-1.29) 1.810E-05 

HEATR3 Inverse variance weighted Glioblastoma  1.28 (1.16-1.41) 8.537E-07 

MYLK4 Wald ratio Non-glioblastoma  0.74 (0.64-0.84) 1.353E-05 

Table 5-14- Mendelian Randomization associations after sensitivity analyses. Instruments are genetic variants that 
provided evidence against horizontal pleiotropy in the sensitivity analysis. Associations represent the OR (95% CI) per SD 
increase in genetically proxied gene expression. 

5.4.5 Blood-specific differential gene expression grouping  

Out of the 9,040 genes in blood tissue examined in relation to glioma risk, differential gene 

expression of 7 genes showed consistent MR (FDR < 0.05) and colocalization (H4 > 0.7) evidence of an 

association with risk of glioma, glioblastoma, or non-glioblastoma risk (Figure 5-4). Of these 

associations, the expression of 5 genes were proxied by a single genetic variant and therefore 

sensitivity analyses to assess horizontal pleiotropy could not be implemented. As differential gene 

expression of two genes (HEATR3 and MYLK4) were instrumented by 3 SNPs this allowed for the 

weighted median, weighted mode analyses to be performed. The magnitude and direction of effect 

was consistent with the IVW estimate throughout these sensitivity analyses, but inference is limited 

due to the low number of instruments. Therefore, the Wald ratio was performed for each instrument 

separately to compare the MR estimate for each instrument. Instruments that were null in this Wald 

ratio sensitivity analysis were removed. Of the 7 genes, expression of 4 (TP53, C11orf65, PANk4, 

MYLK4) showed evidence of an inverse association with glioma or subtype risk.  
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Figure 5-4 - Forest plot of the Mendelian randomization association with supportive colocalization evidence. Associations 
represent the OR (95% CI) per SD increase in genetically proxied gene expression.  

5.4.6 Comparison between gene expression and corresponding protein levels in brain tissue 

To provide additional evidence of a functional effect at the genes associated with glioma or 

subtype risk, I examined if the eQTL used in the MR analysis also influenced the corresponding protein. 

Differential gene expression of 18 genes showed both MR evidence of an association and colocalized 
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with glioma or subtype risk in the brain tissue-specific MR analysis. The SNP used as an eQTL for each 

gene in the MR analysis plus all SNPs in high LD (r2=>0.80), were looked up in the ROS/MAP 

Brain pQTL dataset [481]. There was strong evidence for 7 SNPs (p-value < 5x10-4) at CD14 being pQTLs 

for CD14 (Table 5-15). For the other SNPs looked up in the databases, there was no strong evidence 

that the SNPs were also pQTLs.  

SNP annotated to CD14 p-value Effect size Standard error  

rs778587 2.04E-04 -0.037 0.0079 

rs778583 2.01E-04 -0.037 0.0077 

rs1835148 9.35E-05 -0.038 0.0077 

rs2569193 4.61E-04 -0.035 0.0078 

rs2563298 3.49E-04 -0.036 0.0078 

rs2569169 9.35E-05 -0.038 0.0077 

rs4279384 1.18E-04 -0.037 0.0076 

Table 5-15 – Association with protein levels at identified SNPs in ROS/MAP Brain pQTL database. 
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5.5 Discussion  

In this Chapter, I undertook both MR and colocalization analyses to appraise the causality of 

associations between differential expression of 7,391 genetically proxied genes in brain tissue and 

differential expression of 9,777 genetically proxied genes in blood tissue with risk of glioma and its 

histological subtypes. The findings from this chapter provide evidence that differential expression of 

18 of the genes examined in brain tissue were associated with glioma or subtype risk. Two of the 18 

genes represent new findings not previously reported in the literature (of coiled-coil domain 

containing protein 88b [CCDC88B] and extended synaptotagmins 3 [ESYT3]). In addition, I report 

evidence that differential expression of 7 genes in blood tissue, all of which have previously been 

implicated in glioma, were associated with glioma or subtype risk. 

5.5.1 Brain tissue-specific findings  

 Higher levels of genetically proxied gene expression of CCDC88B in brain tissue were 

associated with an increased risk of glioblastoma. The eQTL used to instrument CCDC88B in this 

analysis was rs60031276. This SNP is reported to be associated with expression of CCDC88B in brain 

tissue in other eQTL data sources, providing support the cis-eQTL used in this MR analysis being 

mapped to CCDC88B. CCDC88B is a protein coding gene that is expressed at high levels in immune 

cells of lymphoid lineage and is needed for T cell maturation and activation [482]. CCDC88B has been 

associated with inflammatory conditions that affect the central nervous system including multiple 

sclerosis [483] and primary biliary cirrhosis [484]. There is no prior evidence in the literature linking 

differential gene expression of CCDC88B with glioblastoma. However, autoimmune diseases are 

heavily reported to influence glioma risk in observational epidemiology [485], while individuals with 

multiple sclerosis are reported to have a higher incidence of glioma [486, 487]. These novel findings 

linking brain specific CCDC88B expression with glioblastoma risk aid the generation of novel 

hypotheses regarding the development of glioma, which require replication and further validation in 

future studies. 
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 Higher levels of gene expression of ESYT3 in brain tissue were associated with a decrease in 

risk of glioma and glioblastoma. The SNP rs10935281 was used as an eQTL for ESYT3 and has been 

reported as a brain eQTL for this gene in one other eQTL database. ESYT3 is reported to support 

calcium ion binding and phospholipid binding activity. Accumulating evidence reports that calcium 

homeostasis is necessary for glial cell signalling and excitotoxicity and that calcium ions might play a 

role in the development of glioblastoma [488]. Prior studies have not reported an association between 

ESYT3 and glioma risk. However, ESYT3 is reported to be downregulated in lung cancer [489]. Within 

humans, different cancers have been shown to have molecular similarities. Identifying expression of 

genes that influence the susceptibility to several cancers can provide insights into subgrouping of 

different cancers which can help guide future clinical trials [490]. This novel association could create 

new hypotheses regarding pan-cancer research to potentially identify germline mutations that are 

associated with several cancers [491].  

 The findings from this analysis provide additional support to 16 genes whose expression has 

previously been reported in the glioma literature. These genes include known glioma risk loci in the 

European population, HEATR3, EGFR, LMF1, JAK1, STN1, PICK1, GALNT6, STMN3 [339, 492] and in the 

Chinese population MDM4 [493]. Furthermore, the findings from this chapter provide evidence that 

differential gene expression of 4 genes (RRM1, CD14, PPP1R14B, MTHFSD) are implicated in glioma 

risk whereas previously they have been reported to be aberrantly expressed in tumour tissue or in the 

context of glioma progression [494-498]. The eQTL for CD14 is also associated with lower protein 

levels in brain tissue.  

The direction of association reported in this analysis did not agree with the literature for EGFR 

and STN1. In this MR analysis, higher levels of expression at EGFR were associated with a decrease in 

non-glioblastoma risk. The SNP rs6979446 used to instrument EGFR expression in this MR analysis is 

robustly associated with EGFR expression in another eQTL brain database [499], providing supporting 

evidence to instrument proxying EGFR expression. EGFR is a transmembrane tyrosine kinase that 
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regulates cell growth, migration, and survival [500]. In glioblastoma, it is widely accepted that EGFR 

overexpression drives glioma development by promoting cell division and tumour invasiveness [501, 

502]. However, overexpression of EGFR is less common in low grade glioma [503-505]. The inverse 

association observed in this MR analysis could reflect differences in the causes of non-glioblastoma 

development compared to glioblastoma. Another possibility is that the contradictory association 

reflects differences in causes of glioma incidence versus causes of glioma progression. Alternatively, 

as there was no pQTL available for EGFR, it might be that the EGFR eQTL data is a poor proxy for 

protein expression. There are numerous examples within the literature where the MR result 

contradicts the results expected based on observational studies. This can be due to instruments for a 

protein giving opposite results for the receptors for the protein or trait heterogeneity where the 

genetic variant is associated with different aspects of the same trait [218]. Thus, further studies with 

larger sample sizes are required to see if the result is replicated.  

Here, higher levels of STN1 expression were associated with a decrease in glioma and non-

glioblastoma risk. In contrast, a prior MR analysis reported that higher levels of gene expression of 

STN1 increased risk of glioma, glioblastoma, and non-glioblastoma [506]. STN1 is involved in telomere 

maintenance, as demonstrated in Chapter 3, and longer leukocyte telomere is associated with an 

increased risk of glioma. The prior MR study used the SNP rs9419958 to instrument STN1. This eQTL 

shows a stronger association with the gene SH3PXD2A in the eQTLGen database, which is in close 

genomic proximity to STN1. Similarly, the eQTL used in this MR analysis, rs3850670, to instrument 

STN1, is also an eQTL for SH3PXD2A in blood tissue. Thus, it is challenging to disentangle the gene 

more relevant to glioma risk due to their close genomic proximity and therefore it is uncertain which 

is the functional gene.  

In this analysis, higher levels of genetically proxied expression of SEC23A was associated with 

an increase in glioma and non-glioblastoma risk. Prior literature has provided little evidence of a 

robust association between differential expression of SEC23A and glioma risk [507]. SEC23A is 

https://genetics.opentargets.org/gene/ENSG00000107957
https://genetics.opentargets.org/gene/ENSG00000107957
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essential for the transportation of secreted proteins from the rough endoplasmic reticulum to the 

Golgi apparatus [508]. An in vitro study using cell lines derived from human melanoma demonstrated 

that SEC23A inhibits the progression of melanoma [509]. There could potentially be shared genetic 

risk loci between genetic susceptibility to both melanoma and glioma [510]. Further research is 

required to validate this hypothesis.  

5.5.2 Blood tissue-specific findings  

In blood tissue, higher levels of genetically proxied gene expression of MYLK4, C11orf65, TP53 

and PANK4 were associated with a decrease in risk of glioma or histological stratified risk. Higher levels 

of genetically proxied gene expression of MPG, RNF123 and HEATR3 were associated with an 

increased glioma or subtype risk. Interestingly, there were eQTLs for 12 of the genes that associated 

with glioma risk in brain tissue, but 11 of these genes did not associate with glioma risk in this blood 

tissue-specific analysis. Apart from HEATR3, the associations were not repeated using brain tissue-

specific gene expression data. This may indicate that blood tissue does not reflect the best model to 

study glioma or it may be due to lack of power in the brain eQTL study. The findings for TP53 agree 

with direction of effect reported in the literature. TP53 acts as a tumour suppressor that removes 

mutated cells, hinders the proliferation of cancer cells, and inhibits malignant transformation [511, 

512]. In agreement with these findings the inverse association between PANK4 and glioma risk has 

been previously reported in a prior MR study [473]. Consistent with the findings in this analysis, the 

glioma literature reports that HEATR3 increases the risk of glioblastoma [209]. The MR and 

colocalization evidence in this chapter indicates RNF123 increases glioblastoma risk. In contrast, a 

prior in vitro study, utilising human glioma cells lines, reported RNF123 was downregulated in 

glioblastoma and lower levels of RNF123 expression increased the risk of glioblastoma progression 

[513]. This in vitro analysis has been undertaken using glioma tumour tissue which is potentially biased 

through confounding by treatment thus restricting any inferences that can be made with respect to 

disease aetiology. A robust association between MYLK4 and glioma risk has not previously been 

reported [514]. The effect estimate was similar in the sensitivity analyses that allowed for violations 
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of the MR assumptions and were consistent with the IVW estimate between MYLK4 and non-

glioblastoma risk. However, this gene was proxied by just 3 SNPs, hence sensitivity analyses are 

underpowered. Similarly, robust associations between C11orf65 and glioma risk have not been 

reported. These novel robust associations require further validation as blood tissue is unlikely to 

reflect the environment of glioma development where differential gene expression influences glioma 

risk.  

5.5.3 Strengths and limitations  

Prior studies have identified several functional possibilities for glioma genetic risk loci [476, 

477], but this analysis further contributes to the existing evidence for differential gene expression in 

the aetiology of glioma. This analysis has several strengths, including the utilisation of two-sample MR 

to appraise tissue-specific differential gene expression with a rare cancer using a hypothesis-free 

approach. Furthermore, this analysis utilised GWAS summary association data from different studies, 

which is a beneficial approach when examining a rare cancer, like glioma, as it provides the capacity 

to study thousands of tissue-specific genes in thousands of glioma cases, which is limited in 

observational studies. In this analysis cis-acting genetic variants were used in the construction of the 

genetic instruments to decrease the probability of direct effects of instruments with glioma risk, which 

would violate the exclusion restriction assumption. Genetic instruments were constructed using 

summary association data derived from brain tissue which is likely to reflect the environment where 

differential gene expression could viably influence the propensity to glioma. Furthermore, 

colocalization was incorporated into the analysis framework as a sensitivity analysis to provide 

supporting evidence to the MR associations and to reduce the likelihood that associations were biased 

due to genetic confounding by LD. 

This analysis aimed to identify differential gene expression associated with glioma or 

histological stratified risk, while also appraising genes putatively associated with glioma in 

observational studies, using a two-sample MR and colocalization framework. The fact that all but two 

genes identified in this analysis have previously been reported in glioma literature reinforces the 
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robustness of the MR colocalization approach to identify likely causal gene-glioma associations. The 

existence of prior evidence between a small number of genes and glioma risk will enable more refined 

hypotheses in subsequent analyses. Furthermore, as a greater number of GWAS become available, 

including GWAS of ‘omic’ data (including the epigenome in brain tissue) more comprehensive 

hypotheses of underlying causal pathways can be tested using MR.  

There were several limitations to these analyses. Firstly, the glioma GWAS data lacks 

granularity and are analysed as either all glioma combined, high grade glioblastoma or non-

glioblastoma. Evidence is increasingly reporting that glioma subtypes are genetically distinct and could 

have different aetiological drivers, and therefore each glioma subtype should be analysed separately. 

In support, the findings from this chapter demonstrated that associations with differential gene 

expression differ according to the subtype examined. Thus, there could be other genes that 

differentially influence specific glioma subtypes. Secondly, most of the eQTLs used in the analysis were 

instrumented by a single genetic variant, therefore, it was not feasible to accurately appraise the 

presence of horizontal pleiotropy, thus causal inference inferred in this chapter is tentative. Future 

work should utilise larger GWAS data sets to increase the number of instruments used to proxy each 

gene. Additional analyses can apply subsequent methods that are available to disentangle what genes 

are driving the association. For instance, cis-multivariable MR [515] can be applied if a genetic region 

contains several genes. Furthermore, in this analysis I used cis-eQTLs, consequently it is biologically 

plausible that gene expression exerts its effect through glioma, and in turn glioma influences the 

protein within the cis region. Therefore, I did not apply Steiger filtering, which tests whether the effect 

of variant of the two traits is mediated by the outcome rather than the exposure, as it is more likely 

to pick up false positives with Steiger filtering due to differences in sample sizes.  

For this MR analysis, eQTLs were constructed using data from bulk ribonucleic acid (RNA)-

sequencing, which aggregates gene expression profiles. As glioma displays intra tumoral 

heterogeneity, bulk RNA data may not capture heterogeneity in gene expression profiles across 
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unique cell types. Subsequent analyses should focus on single-cell eQTLs to ascertain genetically 

regulated gene expression to provide further insights into cell type-specific regulatory mechanisms 

influencing glioma risk. 

5.6 Conclusion  

 In conclusion, this analysis identified 2 novel associations between differential gene 

expression at CCDC88B and ESYT3 with glioma or glioblastoma risk and demonstrated a hypothesis-

free MR and colocalization approach as a powerful method to prioritise pre-existing glioma risk loci 

and identify novel genes that influence risk. Further studies could focus on the mechanistic pathways 

pertinent to glioma development to provide valuable aetiological insights. One hypothesis, requiring 

additional investigation, is to further refine the model gene expression is measured in, such as single 

cells within brain tissue, to reflect the environment where differential gene expression could more 

feasibly influence susceptibility glioma.  

5.7 Next Chapter 

In Chapter 6, I plan to further refine the model in which associations between genetically 

proxied gene expression with glioma and subtype risk are examined, to provide aetiological insights 

into the cell type specific regulatory mechanisms that influence glioma risk. I plan to utilise genetic 

variants to proxy single-cell gene expression and alternative splicing within specific brain cell types to 

perform a single-cell two-sample MR analysis. 
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6 Chapter 6: Utilising single-cell gene expression to 
identify differential gene expression and alternative 
splicing within specific brain cell types that are 
implicated in the aetiology of glioma.  
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6.1 Abstract  

In chapter 5 I investigated the causal relevance of gene expression in glioma risk using cis-

expression quantitative trait loci (eQTLs) in brain and blood tissue. However, it has been suggested 

that eQTL effects may be cell type-specific [516, 517], indicating that the effect of differential gene 

expression on glioma risk using bulk ribonucleic acid (RNA) sequencing data may not capture 

heterogeneity of eQTL effects across cell types [518]. As glioma displays genetic heterogeneity, with 

distinct cells displaying differences in somatic mutations, it is necessary to further refine the cellular 

context in which genetic variants differentially influence gene expression and how this may relate to 

glioma risk. In addition, alternative splicing (AS), which increases RNA transcript diversity, may play an 

important role in the progression of glioblastoma, whereby new splicing isoforms could give rise to 

several malignant phenotypes [286, 287]. However, although the role of AS in glioblastoma is 

emerging, the literature is limited, and further research is required to enhance our understanding of 

AS in glioma development.  

I hypothesised that cell type-specific and brain region-specific gene expression and alternative 

splicing influence glioma risk. Therefore, in this chapter, Mendelian randomization (MR) was 

combined with a colocalization approach to systematically evaluate causal relationships between 

differential gene expression across 8 brain cell types (astrocytes, endothelial cells, excitatory neurons, 

inhibitory neurons, microglia, oligodendrocytes, oligodendrocyte precursor cells/committed 

oligodendrocyte precursors and pericytes) and overall and histological subtype (glioblastoma, non-

glioblastoma) stratified glioma risk. Microglia cells are the resident macrophages within the central 

nervous system [519] and are hypothesised to promote glioma progression [520]. Glioblastoma cells 

have also been shown to interact with the microglia cells [521]. Thus, I performed further MR and 

colocalization analyses examining the association of microglia differential gene expression and 

alternative splicing from 4 different brain regions [middle fontal gyrus (MFG), subventricular zone 

(SVZ), superior temporal gyrus (STG) and the thalamus (THA)], with overall and histological subtype 

(glioblastoma, non-glioblastoma) stratified glioma risk [364].  
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In the analyses examining 8 brain cell types, MR and colocalization evidence found that 

genetically proxied oligodendrocyte-specific CEP70 expression was associated with a decreased 

glioma risk (odds ratio [OR] 0.83, 95% confidence interval [CI] 0.76-0.91, p-adjusted = 1.99x10-2, 

H4=0.55). Genetically proxied oligodendrocyte precursor cells/committed oligodendrocyte 

precursors-specific TGFA expression and oligodendrocyte-specific POLR2F expression were associated 

with an increased glioma risk (OR 1.16, 95% CI 1.07-1.24, p-adjusted = 1.87×10− 2, H4=0.90; OR 1.19, 

95% CI 1.09-1.29, p-adjusted = 6.53×10− 5, H4=0.51, respectively). In the histological subtype-stratified 

analyses, genetically proxied oligodendrocyte-specific POLR2F expression and oligodendrocyte 

precursor cells/committed oligodendrocyte precursors-specific TGFA expression were associated with 

an increased glioblastoma risk (OR 1.35, 95% CI 1.22-1.50, p-adjusted = 8.26×10− 6, H4=0.94; OR 1.20, 

95% CI 1.10-1.32, p-adjusted = 9.83x10−5, H4=0.63, respectively). Genetically proxied oligodendrocyte-

specific PICK1 expression was associated with a decreased glioblastoma risk (OR 0.84, 95% CI 0.79-

0.89, p-adjusted = 6.72x10− 6, H4=0.88). In the analyses examining microglia expression and alternative 

splicing across 4 different brain regions, differential expression in the MFG of a gene antisense to 

TXNDC11 was associated with a decreased non-glioblastoma risk (OR 0.87, 95% CI 0.80-0.94, p-

adjusted = 2.88x10-2, H4=0.80). This comprehensive combined MR and colocalization analysis of brain 

cell type-specific differential gene expression implicates 1 novel gene, CEP70, in glioma aetiology and 

confirms a role of POLR2F, PICK1, TGFA and TXNCD11 in glioma. 
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6.2 Introduction  

A single glioblastoma tumour has been established to be comprised of different clonal and sub-

clonal tumour cell populations which exist within different brain regions and these subpopulations 

can differ in their response to treatment [167, 522]. As bulk ribonucleic acid (RNA)-sequencing 

aggregates gene expression profiles from both heterogeneous brain cells and cell types that constitute 

the tumour microenvironment (e.g., astrocytes, oligodendrocytes and microglia), it may not capture 

heterogeneity in gene expression profiles across unique cell types within individual tissues that may 

contribute to glioma development. Bulk-RNA sequencing has been successful at identifying genetic 

alterations in glioblastoma, which, with the advent of immunohistochemistry have been valuable in 

the identification of diagnostic markers (e.g., isocitrate dehydrogenase status, epidermal growth 

factor receptor gene alterations). However, these genetic characterisations of gliomas have been 

limited in their therapeutic translation, suggesting further information is required to develop effective 

treatments. Single-cell RNA-sequencing, unlike bulk data, can be used to describe differential gene 

expression between cell types [523] and differences in gene regulation [524]. Hence, utilising single-

cell eQTLs to ascertain genetically regulated gene expression can provide additional insight into cell 

type-specific regulatory mechanisms influencing glioma risk. 

The tumour microenvironment (TME) of glioma contains tumour growth factors that have been 

shown to promote glioma growth within mouse models [525, 526]. The TME is composed 

predominantly of macrophages and microglia [527, 528]. Microglia are the primary innate immune 

cells of the central nervous system and are vital to maintain normal function [529]. Furthermore, 

glioblastoma releases cytokines and chemokines that lead to the recruitment of resident microglia 

[530, 531], which, combined with infiltrating macrophages and monocytes, comprise 44% of the 

glioblastoma mass [532, 533]. Evidence from in vitro models of microglia from glioblastoma tissues 

and immortalised cell lines and in vivo studies using marine and mouse models have demonstrated 

that microglia can influence glioblastoma progression by promoting migration and proliferation of 

cancer cells [521, 534-537]. A recent study examining single-cell RNA sequencing of glioma-associated 
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brain microglia with mouse models reported that sex-specific differential gene expression in microglia 

may be involved in the development and prognosis of glioma [538]. However, obtaining reliable causal 

conclusions from transcriptome analysis within in vivo and in vitro studies is difficult due to limitations 

in their study designs, such as confounding factors (sample composition), challenges replicating long-

term exposures, and the inability to replicate human conditions [230, 231, 539]. Therefore, the 

underlying mechanisms through which microglia promote tumour growth in humans remain unclear.  

Currently, there are three generally accepted cells of origin for glioblastoma; neural stem cells 

(NSC), NSC-derived astrocytes, and oligodendrocytes precursor cells (OPCs), which differentiate into 

oligodendrocytes [25, 26]. To date, gene expression profiling of human glioblastomas that have 

employed single-cell RNA-sequencing have provided further insights into cell type-specific regulatory 

mechanisms in real time. For example, one analysis provided evidence that neural progenitor cells 

drive glioma growth [540]. Though these types of analyses cannot demonstrate causal relationships, 

they are nonetheless valuable in identifying links between expression of particular genes and glioma 

which can be used for prognosis to enhance understanding of prognostic factors for glioma. Research 

using single-cell gene expression within glioma has also reported differences in expression of receptor 

tyrosine kinases (RTKs) between cell types in glioblastoma, resulting in cells with different levels of 

tyrosine kinase inhibitor resistance (TKIs) [541], thus, possibly explaining the failure of such drugs as 

glioblastoma treatment [542]. Studies investigating differential gene expression using single-cell RNA-

sequencing within glioma are growing [543-547]. However, implementing single-cell RNA-sequencing 

has been challenging due to limitations in methods and the relatively high cost of sequencing [548]. 

For instance, gene expression profiling using single-cell RNA-sequencing is subject to more noise 

compared to bulk RNA-sequencing, as the amplification of small quantities of starting material 

combined with limited sampling can cause distortion in gene expression profiles [548]. Furthermore, 

cell-to-cell variability can be biased by confounding factors including cell size and cell cycle status [549].   
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Alternative splicing is required for cell differentiation and gene expression regulation [550], with 

numerous examples of functional alternative splicing variants within the brain existing [551]. There 

has been considerable interest in the role of alternative splicing in the formation of oncogenes and 

tumour suppressors [552-554]. Oncogene activation together with loss of function of tumour 

suppressor genes disrupts the cell cycle, permitting uncontrolled cell proliferation, which can influence 

cancer development. Studies investigating the role of alternative splicing within glioma are expanding 

[555, 556]. For instance, an in vitro study using glioma cell lines demonstrated that a single alternative 

splicing variant in MKNK2 inhibits cell proliferation in glioblastoma [557]. In addition, using data from 

31 glioblastoma biopsies and in vitro models, aberrant splicing of a VEGFA splicing variant has been 

reported in glioblastoma, which influences the pro- to anti-angiogenic balance [558]. However, studies 

to date have focused on a limited number of splicing events in relation to glioma risk. In addition, in 

vivo and in vitro studies examining single-cell RNA-sequencing are prone to challenges such as 

confounding. For example, in vivo studies can be subject to confounding by sample composition and 

handling stress. In addition, numerous confounding factors in vitro are difficult to measure (e.g., 

biological confounders such as cell cycle status if expression changes across cell cycle) and are 

therefore difficult to control for.  

Mendelian randomization (MR) can be applied to investigate the influence of single-cell gene 

expression and alternative splicing in glioma risk utilising expression quantitative loci (eQTLs) and 

splicing quantitative loci (sQTLs), respectively, as instrumental variables. Insights from MR can be 

strengthened through the use of colocalization analysis which aims to evaluate whether two traits 

(e.g., an exposure and outcome) included in an MR analysis share one or more causal variants at a 

particular genetic locus, suggesting a shared aetiology between the two traits [326]. To date, MR 

studies investigating the role of differential gene expression in glioma risk have been restricted to bulk 

RNA-sequencing data [473]. 
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6.2.1 Chapter objectives  

The utility of single-cell RNA-sequencing in examining the role of expression and alternative 

splicing in glioma risk has not been adequately explored and can potentially enhance understanding 

of glioma development. Here, I hypothesised that an improved understanding of genetically proxied 

brain cell type-specific gene expression and alternative splicing may offer insight into cell type-specific 

regulatory mechanisms influencing glioma risk. Therefore, I used a combined MR and colocalization 

approach to systematically evaluate causal relationships between differential gene expression across 

8 brain cell types (astrocytes, endothelial cells, excitatory neurons, inhibitory neurons, microglia, 

oligodendrocytes, oligodendrocyte precursor cells/committed oligodendrocyte precursors and 

pericytes) and overall and histological subtype-stratified glioma risk. I then performed further MR and 

colocalization analyses that focused on the association of microglia differential gene expression and 

alternative splicing from 4 different brain regions [middle fontal gyrus (MFG), subventricular zone 

(SVZ), superior temporal gyrus (STG) and the thalamus (THA)] with overall and histological subtype 

(i.e., glioblastoma, non-glioblastoma) stratified glioma risk.  
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6.3 Methods  

A flow diagram displaying the MR and colocalization pipeline employed for these analyses is presented 

in Figure 6-1.  

 

 Figure 6-1 - A summary of the instrument construction and analysis pipeline. All Mendelian randomization estimates were 
subject to colocalization as an additional sensitivity analysis to enhance evidence to support causality of associations. GWAS; 
genome-wide association study, eQTL; expression quantitative trait loci, sQTL; splicing expression quantitative trait loci, GBM; 
glioblastoma, FDR; false discovery threshold.  
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6.3.1 Glioma genetic association data  

Summary genetic association data were obtained from a genome-wide association study 

(GWAS) meta-analysis of 12,488 glioma cases and 18,190 controls. Summary genetic association data 

for histological subtype-stratified analyses were also obtained as follows: glioblastoma (6,191 cases 

and 18,160 controls) and non-glioblastoma (5,819 cases and 18,190 controls) [339]. All analyses were 

restricted to individuals of European ancestry. Additional information on statistical analyses, 

imputation, and quality control measures for each study and the meta-analysis can be found in the 

original published paper [339] and is presented in summary form in Chapter 2. 

6.3.2 Instrument construction  

6.3.2.1 Procedures for 8 brain cell type analyses  

To develop genetic instruments to proxy cell type-specific differential gene expression I 

obtained summary genetic association data from a GWAS meta-analysis of 8 brain cell types 

(astrocytes, endothelial cells, excitatory neurons, inhibitory neurons, microglia, oligodendrocytes, 

oligodendrocyte precursor cells/committed oligodendrocyte precursors [OPCs/COPs], and pericytes) 

in 373 samples from 192 individuals of European ancestry [364]. The following covariates were 

adjusted for in the analysis: study, disease status (Alzheimer’s (AD), multiple sclerosis (MS), controls, 

or other AD traits), and the 70 first principal components which were associated with covariates (e.g., 

age, tissue, and number of single cells). Further details on the enrolment and quality control measures 

for each study and the meta-analysis can be found in Chapter 2.  

In instrument construction, to proxy differential gene expression in the 8 cell types, genome 

wide significant (P<5x10-6) and independent (r2<0.01) cis-acting SNPs (±500kb from the gene 

transcription start site) were obtained. LD clumping of SNPs was performed in PLINK [404] using the 

1000 Genomes Phase 3 CEU reference panel [478].  

6.3.2.2 Procedure for microglia eQTL and sQTL analyses  

To identify cis-eQTLs to proxy differential gene expression and cis-sQTLs to proxy differential 

isoform expression in microglia, I obtained summary genetic association data from a GWAS meta-

analysis of these measures using 255 primary human microglia samples across 4 brain regions in 90 
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individuals, all of whom were of European ancestry [365]. Genetic variants were measured using the 

Illumina Infinium Global Screening Array. The following covariates were adjusted for in the analysis: 

age, sex, donor ID, region, cause of death, the first four ancestry multidimensional scaling values (C1–

C4), percentage of mRNA bases, and median insert size and percentage of ribosomal bases. Additional 

information on statistical analysis, imputation, and quality control measures for each study and the 

meta-analysis can be found in the original published paper [365] and is presented in summary form in 

Chapter 2. 

Genomic locations of reported genes were identified using BioMart (GRCh38) as genome build 

38 was used in the GWAS meta-analysis of human microglia samples across 4 different brain regions 

[559]. A cis-eQTL and cis-sQTL was defined as any SNP within ±250kb of the genomic coordinates of 

the gene of interest that associated with gene expression or transcript isoform expression at        

P<5x10-6 and r2<0.01. As above, PLINK [404] was used to clump the SNPs according to LD (r2<0.01) 

using 1000 Genomes Phase 3 CEU as the reference panel [478].  

 Prior to performing MR, the exposure and outcome datasets were harmonised to the same 

allele and oriented to ensure the effect allele corresponded to the gene or transcript isoform 

expression-increasing allele. Palindromic SNPs that had incompatible alleles for the exposure and 

outcome were excluded. SNPs that did not have a corresponding genetic variant in the glioma GWAS, 

or a proxy in high LD (r2>0.80) were removed.   

6.3.3 Mendelian randomization analysis 

In the MR analyses, all genetic instruments consisted of 1 SNP, therefore, the Wald ratio was 

used to generate causal estimates and the delta method was used to approximate standard errors. 

Additional details on the Wald ratio can be found in Chapter 2. Results generated from MR analysis 

are presented as p-values adjusted for multiple testing using a false discovery rate (FDR) correction, 

with p-adjusted<0.05 designated as “strong” and 0.05<P-adjusted<0.10 as “weak” evidence. Results 

are expressed as odds ratios (OR) and 95% confidence intervals (CI) per beta unit increase in 

genetically proxied alternative splicing and SD increase in genetically proxied gene expression.  
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6.3.4 Sensitivity analyses  

MR analyses can generate unbiased estimates of causal effects of differential gene expression 

or alternative splicing on disease outcomes if the following assumptions are met: (i) the genetic variant 

is associated with expression or transcript isoform expression of the relevant gene (the “relevance” 

assumption); (ii) there are no common causes of the genetic variant-outcome association (the 

“exchangeability” assumption); and (iii) the genetic variant influences the outcome exclusively 

through the exposure (i.e., differential gene expression or alternative splicing) of interest (the 

“exclusion restriction” assumption). 

The “relevance” assumption was tested by estimating the proportion of variance in gene 

expression or transcript isoform expression explained by the IV (r2) and by the F-statistic. The F-

statistic was used to test instrument strength and to evaluate the likelihood that the MR estimate is 

affected by weak instrument bias. As a convention, an F-statistic >10 is used to indicate minimal weak 

instrument bias [480].  

 The “exchangeability” assumption was evaluated by performing colocalization to distinguish 

whether top findings were driven by shared causal variants or distinct causal variants in linkage 

disequilibrium with each other [329]. To ensure colocalization provided reliable posterior probabilities 

in the presence of conditionally independent associations, I performed pairwise conditional and 

colocalization (PWCoCo) analysis of all conditionally independent (P<5x10-8) SNPs within a ±250kb 

window of the sentinel eQTL and all conditionally independent association signals in the glioma 

dataset from the same genomic window [329]. Colocalization requires providing prior probabilities 

that any SNP within the genomic region of interest is associated with the exposure, the outcome or 

both. Here I used the default priors provided by PWCoCo (p1 = 1e-4, p2 = 1e-4, p12 = 1e-5). A high 

posterior probability for H4 provides support for both traits sharing a causal variant at a particular 

locus (i.e., “colocalizing”). [327]. For the purposes of these analyses, I designated posterior probability 

H4>0.8 as “strong” and 0.5<posterior probability for H4<0.8 as “suggestive” evidence to support 

colocalization of traits examined. A more relaxed threshold of > 0.5 for “suggestive” evidence to 



 

203 
 

support colocalization was used in this chapter as the power of colocalization was lower compared 

the rest of this thesis due to the small number of cases used to derive eQTLs and sQTLs.  

It is also possible that the “exclusion restriction” assumption was violated by horizontal 

pleiotropy if differential gene expression or alternative splicing and glioma risk are influenced by the 

same underlying causal variant but through independent biological pathways. However, it was not 

possible to test for horizontal pleiotropy using pleiotropy-robust models as instruments were 

restricted to a single SNP. Consequently, causal conclusions presented here are tentative.   

All MR analyses were conducted using the “TwoSampleMR” package in R studio (version 4.1.0) 

using the computational facilities of the Advanced Computing Research Centre, University of Bristol 

(http://www.bristol.ac.uk/acrc/).  
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6.4 Results  

I hypothesised that examining single-cell gene expression and alternative splicing within the 

brain could inform on regulatory mechanisms underpinning glioma development. To test this 

hypothesis, I applied a two-sample MR framework with colocalization.  

6.4.1 Instrument construction for genetically proxied brain cell type-specific gene expression and 

alternative splicing.  

In summary, to generate genetic instruments for differential gene expression in the 8 different 

cell types within the brain, I curated 11,047 genes with a cis-eQTL in astrocytes; 10,397 genes with a 

cis-eQTL in endothelial cells; 14,057 genes with a cis-eQTL in excitatory neurons; 12,474 genes with a 

cis-eQTL in inhibitory neurons; 8,590 genes with a cis-eQTL in microglia; 10,462 genes with a cis-eQTL 

in oligodendrocytes; 10,408 genes with a cis-eQTL in OPCs/COPs and 6,697 genes with a cis-eQTL in 

pericytes. To create genetic instruments for both gene expression and alternative splicing in microglia 

cells across the 4 brain regions, I curated 10,758 genes with an eQTL and 6,280 genes with a sQTL in 

MFG; 10,508 genes with an eQTL and 6,212 genes with a sQTL in STG; 10,501 genes with an eQTL and 

6,244 genes with a sQTL in SVZ and 10,508 genes with an eQTL and 6,180 genes with a sQTL in THA. 

In total across the 8 cell types, I retained 1,897 genes that could be instrumented for the MR analysis. 

For the microglia specific analyses across the four brain regions, I retained 503 genes that could be 

instrumented with a cis-eQTL and 1,631 genes that could be instrumented by a cis-sQTL in the MR 

analysis. F-statistics for all instruments ranged from 20 to 300 indicating that the MR associations were 

unlikely to be influenced by weak instrument bias (Appendix 4.1 [8 cell types eQTLs] 4.2 [Microglial 

eQTLs] and 4.3 [Microglial sQTLs]).  

6.4.2 Mendelian randomization: genetically proxied cell type-specific gene expression and glioma 

risk. 

Two-sample MR was used to investigate the potential causal effect of differential expression 

of 1,897 genes within 8 cell types on glioma risk. MR provided strong evidence that differential 

expression of 9 genes within 4 different cell types influenced glioma risk, after applying an FDR 

correction (FDR P<0.05) (Table 6-1). No genes showed weak evidence of an association. Complete MR 

analysis results can be found in Appendix 4.4.  
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Gene Cell type OR (95% CI) p-adjusted 

JAK1 Excitatory neurons 1.34 (1.20-1.49) 4.61E-04 

GALNT6 Oligodendrocytes 1.22 (1.12-1.32) 2.71E-03 

SLC4A8 Oligodendrocytes 1.20 (1.11-1.30) 2.40E-03 

TPTEP2-CSNK1E Oligodendrocytes 1.14 (1.07-1.22) 2.99E-02 

POLR2F Oligodendrocytes 1.19 (1.09-1.29) 2.39E-02 

CEP70 Oligodendrocytes 0.83 (0.76-0.91) 1.99E-02 

SCFD1 Inhibitory neurons 0.79 (0.70-0.89) 2.00E-02 

SCFD1 Excitatory neurons 0.79 (0.70-0.89) 1.75E-02 

PICK1 Oligodendrocytes 0.91 (0.87-0.95) 1.80E-02 

TGFA OPCs / COPs 1.16 (1.07-1.24) 1.87E-02 

Table 6-1 – Mendelian randomization associations between genetically proxied gene expression and risk of glioma. 
Associations represent the OR 95% CI per SD increase in genetically proxied gene expression. P-adjusted is the p-value 
resulting from MR adjusted for the false discovery rate.  

In the glioma subtype-stratified analyses, differential expression of 10 genes within 5 different 

cell types provided strong evidence of an association with glioblastoma risk, after applying an FDR 

correction (FDR P<0.05) (Table 6-2). There was little evidence to suggest an association of expression 

of any gene with risk of non-glioblastoma (FDR P>0.10 across all analyses). Full MR results for both 

subtypes can be found in Appendix 4.5 and 4.6, respectively.  

Gene Cell type OR (95% CI) p-adjusted 

PICK1 Oligodendrocytes 0.84 (0.79-0.89) 6.72E-06 

POLR2F Oligodendrocytes 1.35 (1.22-1.50) 8.26E-06 

JAK1 Excitatory neurons 1.47 (1.28-1.68) 1.16E-05 

TPTEP2-CSNK1E Oligodendrocytes 1.27 (1.17-1.37) 1.65E-05 

GALNT6 Oligodendrocytes 1.32 (1.19-1.47) 3.13E-05 

SLC4A8 Oligodendrocytes 1.29 (1.17-1.43) 6.18E-05 

SCFD1 Inhibitory neurons 0.74 (0.64-0.85) 9.57E-03 

SCFD1 Excitatory neurons 0.73 (0.63-0.85) 8.37E-03 

CEP70 Oligodendrocytes 0.80 (0.71-0.89) 1.04E-02 

TGFA OPCs / COPs 1.20 (1.10-1.32) 9.38E-03 

MIR4300 Excitatory neurons 0.85 (0.78-0.92) 8.71E-03 

MIR4300 Oligodendrocytes 0.89 (0.84-0.94) 9.15E-03 

MIR4300 OPCs / COPs 0.90 (0.85-0.95) 8.44E-03 

MIR4300 Astrocytes 0.90 (0.85-0.95) 7.84E-03 

Table 6-2 – Mendelian randomization association between genetically proxied gene expression and risk of glioblastoma. 
Associations are the OR 95% CI per SD increase in genetically proxied gene expression. P-adjusted is the p-value resulting from 
MR adjusted for the false discovery rate. 

Next, as a sensitivity analysis, colocalization was performed to assess the probability that 

differential gene expression and glioma risk were driven by a shared causal variant at each locus. A 
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posterior probability for H4 indicates that expression and glioma are colocalized. In the colocalization 

analysis, there was consistent evidence to implicate 3 genes in glioma risk: OPCs / COPs TGFA 

expression (H4=0.90), oligodendrocyte CEP70 expression (H4=0.55) and oligodendrocyte POLR2F 

expression (H4=0.51) (Table 6-3).  

Gene Cell type p-adjusted H4 

JAK1 Excitatory neurons 4.61E-04 5.2E-05 

GALNT6 Oligodendrocytes 2.71E-03 3.8E04 

SLC4A8 Oligodendrocytes 2.40E-03 3.4E-04 

TPTEP2-CSNK1E Oligodendrocytes 2.99E-02 0.41 

POLR2F Oligodendrocytes 2.39E-02 0.51 

CEP70 Oligodendrocytes 1.99E-02 0.55 

SCFD1 Inhibitory neurons 2.00E-02 3.8E-05 

SCFD1 Excitatory neurons 1.75E-02 3.6E-05 

PICK1 Oligodendrocytes 1.80E-02 0.018 

TGFA OPCs / COPs 1.87E-02 0.90 

Table 6-3 –The posterior probability from colocalization for the H4 configuration for genes that showed Mendelian 
randomization evidence (FDR P<0.05) for an association. P-adjusted is the p-value resulting from MR adjusted for the false 
discovery rate. 

In analyses stratified on histological subtype, there was strong evidence to support 

colocalization (posterior probability for H4 >0.80) between gene expression of POLR2F and PICK1 in 

oligodendrocytes and suggestive evidence to support colocalization TGFA (posterior probability for 

H4 >0.50) in OPCs / COPs and glioblastoma risk (Table 6-4). 

 

 

 

 

 

 

 

https://www.genecards.org/cgi-bin/carddisp.pl?gene=TPTEP2-CSNK1E&keywords=ENSG00000283900
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Gene Cell type p-adjusted H4 

PICK1 Oligodendrocytes 6.72E-06 0.88 

POLR2F Oligodendrocytes 8.26E-06 0.94 

JAK1 Excitatory neurons 1.16E-05 6.1E-05 

TPTEP2-CSNK1E Oligodendrocytes 1.65E-05 0.41 

GALNT6 Oligodendrocytes 3.13E-05 4.3E-04 

SLC4A8 Oligodendrocytes 6.18E-05 4E-04 

SCFD1 Inhibitory neurons 9.57E-03 7.9E-05 

SCFD1 Excitatory neurons 8.37E-03 7.2E-05 

CEP70 Oligodendrocytes 1.04E-02 0.40 

TGFA OPCs / COPs 9.38E-03 0.63 

MIR4300HG Excitatory neurons 8.71E-03 1.3E-03 

MIR4300HG Oligodendrocytes 9.15E-03 1.3E-03 

MIR4300HG OPCs / COPs 8.44E-03 1.4E-03 

MIR4300HG Astrocytes 7.84E-03 1.6E-03 

Table 6-4 - The posterior probability from colocalization for the H4 configuration for genes that showed Mendelian 
randomization evidence (FDR < 0.05) of an association. P-adjusted is the p-value resulting from MR adjusted for the false 
discovery rate. 

6.4.3 Sensitivity analyses to further explore the roles of instrumental variables. 

Given the use of eQTLs located in or within 500kb from the transcription start site (TSS) of 

corresponding genes as instruments, I explored whether the genomic position of each eQTL could 

potentially introduce horizontal pleiotropy through being located in, and influencing expression of, 

neighbouring genes. When constructing an instrumental variable for POLR2F, I noted that the cis-eQTL 

constructed to act as a proxy for expression of this gene in oligodendrocytes was located in PICK1, a 

neighbouring gene to POLR2F. This eQTL (rs2076370) was in perfect LD (r2=1.00) with the eQTL used 

to instrument PICK1 expression in oligodendrocytes (rs2018980). As a sensitivity analysis to ensure 

that the causal estimate generated for POLR2F expression using this variant did not reflect potential 

horizontal pleiotropic effects via PICK1 expression, I re-ran MR and colocalization analysis for POLR2F 

using a more conservative instrument construction and colocalization window strategy. For MR 

analyses, I constructed a new instrument for POLR2F expression by selecting the SNP most strongly 

associated with PICK1 expression that was located in the POLR2F locus (i.e., as opposed to permitting 

SNPs to be located within 500kb from the TSS). When calculating a revised MR estimate using this 

alternative POLR2F eQTL (rs5995529, P-value for association with expression= 2.82 x10-13), the 

https://www.genecards.org/cgi-bin/carddisp.pl?gene=TPTEP2-CSNK1E&keywords=ENSG00000283900
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previously reported association of genetically proxied POLR2F expression persisted (OR 1.41 95% CI 

1.24-1.60, P=1.93 x10-7). Likewise, gene-centric colocalization analysis (i.e., evaluating associations of 

SNPs with POLR2F expression and glioma risk that were restricted to the POLR2F locus) found strong 

evidence of shared causal variants across both traits within this locus (posterior probability for 

H4=0.98). Regional plots for PICK1 expression and POLR2F expression with regional plots for 

corresponding glioma association signals are presented in Figure 6-2 and Figure 6-3, respectively. 

eQTLs used to instrument expression of other genes were located in or within close proximity to the 

relevant gene (≤82kb from gene), so no further sensitivity analyses were performed for these genes. 

Regional plots for TGFA expression and CEP70 expression are presented in Figures 6-4 and 6-5.  
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Figure 6-2 - Regional association plot of gene expression of PICK1 and glioma risk. The two regional plots reflect the marginal 
association of gene expression of PICK1 and glioma risk. The X-axis is the genomic coordinates of the PICK1 region. The Y-axis 
left represents the regional associations.  
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Figure 6-3 - Regional association plot of gene expression of POLR2F and glioma risk. The two regional plots reflect the 
marginal association of gene expression of POLR2F and glioma risk. The X-axis is the genomic coordinates of the POLR2F 
region. The Y-axis left represents the regional associations. 
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Figure 6-4 – Regional association plot of gene expression of TGFA and glioma risk. The two regional plots reflect the 
marginal association of gene expression of TGFA and glioma risk. The X-axis is the genomic coordinates of the TGFA region. 
The Y-axis left represents the regional associations. 
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Figure 6-5 - Regional association plot of gene expression of CEP70 and glioma risk. The two regional plots reflect the 
marginal association of gene expression of CEP70 and glioma risk. The X-axis is the genomic coordinates of the CEP70 
region. The Y-axis left represents the regional associations. 
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6.4.4 Summary of results 

The 3 genes that showed consistent MR and colocalization evidence of an association with 

glioma and glioblastoma are displayed in Figure 6-6. In summary, the overall glioma results indicate 

that increased levels of gene expression of CEP70 in oligodendrocytes were associated with a reduced 

risk of glioma (OR 0.83, 95% CI 0.76-0.91, p-adjusted = 1.99x10-2, H4=0.55), increased levels of gene 

expression of POLRF2 in oligodendrocytes were associated with an increased risk of glioma (OR 1.19, 

95% CI 1.09-1.29, p-adjusted = 6.53×10− 5, H4=0.51), and increased levels of gene expression of TGFA 

in OPCs/COPs were associated with an increased risk of glioma (OR 1.16, 95% CI 1.07-1.24, p-adjusted 

= 1.87×10−2, H4=0.90). In the histological subtype-stratified MR and colocalization analysis, I observed 

that higher levels of gene expression of POLRF2 in oligodendrocytes and TGFA in OPCs/COPs were 

associated with an increased risk of glioblastoma (OR 1.35, 95% CI 1.22-1.50, p-adjusted = 8.26×10− 6, 

H4=0.94) (OR 1.20, 95% CI 1.10-1.32, p-adjusted = 9.83x10−5, H4=0.63), respectively. Increased levels 

of gene expression of PICK1 in oligodendrocytes were associated with a decreased risk of glioblastoma 

(OR 0.84, 95% CI 0.79-0.89, p-adjusted 6.72x10− 6 , H4=0.88). 
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Figure 6-6 - Forest plot of the Mendelian randomization association with supportive colocalization evidence. Associations 
represent the OR 95% CI per SD increase in genetically proxied gene expression. OPCs/COPs; oligodendrocyte precursor 
cells/committed oligodendrocyte precursors. 
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6.4.5 Mendelian randomization: genetically proxied microglia-specific gene expression and 

alternative splicing associations with glioma risk in microglia across 4 brain regions. 

In the MR analysis, there was weak evidence (FDR P<0.10) that differential expression of 3 

genes was associated with glioma risk within the MFG region. In histological subtype-stratified 

analyses, expression of 1 gene displayed weak MR evidence (FDR P<0.10) of an association with 

glioblastoma risk in MFG and expression of 2 genes exhibited strong MR evidence (FDR P<0.05) of an 

association with non-glioblastoma risk within MFG (Table 6-5). Complete results from MR analyses 

are presented in Appendix 4.7, 4.8 and 4.9, respectively. In colocalization analysis, there was 

consistent evidence of a shared causal variant between expression of the gene antisense to TXNDC11 

in MFG, H4=0.80, and non-glioblastoma (Figure 6-7). For all other genes with MR evidence, 

colocalization analysis found little supporting evidence (H4<0.50) that gene expression and glioma risk 

were likely to share a causal variant (Table 6-5). 

Outcome Gene OR (95% CI) p-adjusted H4 

Glioma OSBP2 0.91 (0.86-0.96) 0.0517 0.013 

Glioma AGA 1.16 (1.06-1.27) 0.0927 7.02E-03 

Glioma HMBOX1 1.09 (1.03-1.15) 0.070 0.15 

Glioblastoma AGA 1.21 (1.08- 1.35) 0.075 9.73E-03 

Non-glioblastoma BTN3A2 1.13 (1.06-1.20) 0.0374 0.20 

Non-glioblastoma Antisense to TXNDC11 0.87 (0.80-0.94) 0.0288 0.80 

Table 6-5 – Mendelian randomization association (OR 95% CI) between genetically proxied gene expression in microglia, 
in all four brain regions, and risk of overall and histological subtype-stratified glioma risk. Associations represent the OR 
95% CI per SD increase in genetically proxied gene expression. P-adjusted is the p-value resulting from MR adjusted for the 
false discovery rate. 
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Figure 6-7 - Regional association plot of gene expression of the gene antisense to TXNDC11 and non glioblastoma risk. 
The two regional plots reflect the marginal association of gene expression of the gene antisense to TXNDC11 and non-
glioblastoma risk. The X-axis is the genomic coordinates of the TXNDC11 region. The Y-axis left represents the regional 
associations. 
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In the MR analyses employing sQTLs across 4 brain regions, there was weak evidence to 

suggest associations of genetically proxied alternative splicing of 2 transcripts (UQCRH, ADCK5) in up 

to 3 brain regions (MFG, SVZ, THA) with glioblastoma risk. In colocalization analysis, there was little 

supportive evidence of a shared causal variant between the alternative isoform of these genes and 

glioblastoma risk (Table 6-6). Full MR results of alternative splicing with glioma risk, glioblastoma risk 

and non-glioblastoma risk can be found in Appendix 4.10, 4.11 and 4.12, respectively.  

Brain region Gene OR (95% CI) p-adjusted H4 

SVZ UQCRH 1.06 (1.03-1.10) 0.0991 5.24E-03 

THA UQCRH 1.05 (1.02-1.08) 0.0903 6.83E-03 

MFG ADCK5 0.91 (0.87-0.96) 0.0814 0.0199 

Table 6-6 – Mendelian randomization association (OR 95% CI) between genetically proxied alternative splicing in microglia, 
in all four brain regions, and risk of glioblastoma. Associations are the OR 95% CI per SD increase in genetically proxied 
alternative splicing. P-adjusted is the p-value resulting from MR adjusted for the false discovery rate. 
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6.5 Discussion  

In this combined Mendelian randomization and colocalization analysis, a framework was 

implemented to examine the putative associations of cell type-specific differential gene expression 

and alternative splicing in up to 12,488 glioma cases and 18,190 controls. Cell type-specific expression 

of five genes (CEP70, POLRF2, TGFA, PICK1, gene antisense to TXNDC11) was found to associate with 

overall or histological subtype-stratified glioma risk, one of which (CEP70) is a novel putative glioma 

susceptibility locus. CEP70 expression is putative in the progression of several other cancers.   

The positive association observed between genetically proxied expression of TGFA with 

glioma and glioblastoma risk in OPCs/COPs cells is consistent with the current model of the cell of 

origin of glioblastoma [25]. Here, genetically proxied expression of TGFA in OPCs/COPs cells was 

associated with a ~1.16 fold (95% CI 1.07-1.24) increase in glioma risk and ~1.20 fold (95% CI 1.10-

1.32) increase in glioblastoma risk, which was further supported in colocalization analysis. OPCs 

continue to proliferate in the adult central nervous system and therefore can acquire mutations which 

are suspected to contribute to gliomagenesis [560-562]. Garcia-Marques et al. (2014) reported that in 

an adult mouse brain, a single OPC could give rise to 400 cells, demonstrating their ability to self-

renew [563]. Studies have reported elevated TGFA expression in some glioma cell lines and within 

some resected human glioblastoma compared with normal brain tissue [496, 564]. Similarly, in 

Chapter 5, genetically proxied TGFA expression in aggregated brain tissue showed MR evidence (FDR 

P-adjusted<0.05) of an association with glioma and glioblastoma risk and evidence of colocalization 

(H4>0.8) between TGFA expression and liability to glioblastoma. TGFA is a member of the epidermal 

growth factor (EGF) family and can bind to the epidermal growth factor receptor (EGFR) [565]. EGFR 

is over-expressed in glioblastoma [188, 566] and has a well-established role in enhancing cell growth, 

migration and invasion [567, 568]. TGFA has also been reported to induce tyrosine phosphorylation of 

EGF-R by binding to the receptor to increase proliferation of glioma cells [569].  

There was evidence to suggest that genetically proxied oligodendrocyte-specific expression of 

POLR2F was associated with an increased risk of glioma and glioblastoma. In line with these results, 
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POLR2F has previously been linked to glioma. For instance, an in vitro transcriptome analysis of 70 

glioblastoma samples that examined which targetable gene products were essential for the survival 

of glioblastoma using data from the gene expression omnibus observed that suppression of POLR2F 

resulted in glioma cell death [570]. Another study that combined bioinformatics with tumour samples 

from 52 glioblastoma patients observed that lower levels of POLR2F expression may be linked to 

longer overall survival in glioblastoma patients [571].  

In the MR and colocalization analysis genetically proxied expression of oligodendrocyte-

specific PICK1 was also found to be associated with a ~ 16% lower odds (95% CI 0.79-0.89) of 

glioblastoma, as has been shown previously in Chapter 5 using brain specific bulk RNA and glioma risk 

(12,488 glioma cases and 18,190 controls). A previous MR study using summary genetic association 

data from a GWAS of 7,400 glioma cases and 8,257 controls and bulk brain tissue found a positive 

association between PICK1 and glioblastoma risk [473]. The discrepancy in the direction of association 

between these MR studies could be due to bulk RNA not reflecting possible sources of heterogeneity 

in expression-cancer associations across cell types. 

Here, genetically proxied oligodendrocyte-specific expression of centrosomal protein 70 

(CEP70) was associated with a lower risk of glioma. CEP70 has been shown to be involved in several 

cellular processes, including cell division and migration [572]. Centrosome abnormalities, including 

both structural and functional alterations, have been associated with cancer development. For 

instance, CEP70 has previously been linked to pancreatic cancer in an in vivo study of rodents, where 

lower levels of expression were linked to cell death and the suppression of pancreatic cancer cell 

proliferation [573]. An in vitro study reported that CEP70 upregulation stimulated breast cancer cell 

migration and invasion [574]. Furthermore, in vitro and in vivo studies have demonstrated that 

overexpression of CEP70 is thought to influence 13 cancers by mediating cancer growth and 

metastasis [573-575]. The role of CEP70 with glioma has not previously been reported. Although a 

recent study examining glioma tissue from 40 patients reported that a protein from the same family, 
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centrosomal protein 55 (CEP55), played an important role in the proliferation of glioma cells [576], 

the effect observed was in the opposite direction to the protective role observed in this analysis. These 

novel findings linking oligodendrocyte-specific CEP70 expression with glioma risk are in the opposite 

direction to those from several other cancers. Future work is required to replicate and validate 

potential mechanisms governing this effect.  

In agreement with recent in vivo and in vitro evidence, I report putative roles of microglial 

differential gene expression in glioma risk [577]. Here, MR evidence indicated that expression of a 

gene antisense to thioredoxin domain-containing protein 11 (TXNDC11) in microglia was associated 

with a ~ 13% lower odds (95% CI 0.80-0.94) of non-glioblastoma. TXNDC11 is a redox regulator 

implicated in protein folding of thyroid oxidase [578] and has been reported to be involved in the 

progression of gynaecological cancer [579]. A previous study using gene expression databases that 

examined the association between TXNDC11 expression and glioma progression reported that 

TXNDC11 expression was upregulated in glioma as compared to healthy brain tissue [580]. The 

findings in this chapter are not consistent with the direction of the association reported in the previous 

study; however, here I investigated glioma onset, whereas the other study examined prognosis where 

aetiology could in principle differ [580]. In addition, the prior study utilised gene expression data from 

glioma tissue using bulk RNA-sequencing which is more likely to be subject to confounding by cell type 

variation. Thus, the association is more likely to reflect correlation rather that causation as the 

association could reflect a relationship between unmeasured confounders and glioma. As TXNDC11 is 

a redox regulator, it is plausible that TXNDC11 expression protects against glioma development by 

eliminating reactive oxygen species that can cause oxidative stress and lead to the development of 

cancer [581]. In support of this theory, there is accumulating evidence that oxidative stress contributes 

to glioma progression [582, 583]. Furthermore, TXNDC11 expression has previously been reported to 

regulate the immune microenvironment in glioma [580]. Here, I observed that the association 

between TXNDC11 expression is only observed within microglia, which are immune cells. Thus, 
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highlighting that using cell type-specific expression data is more likely to accurately reflect the 

biological role of the gene expression.  

The strengths of this study include the use of single-cell gene expression data which permitted 

the exploration of differential gene expression and alternative splicing in up to 8 distinct cell types in 

glioma onset. I utilised cis-acting genetic variants in the construction of the genetic instruments to 

reduce the likelihood of direct effects of instruments with glioma risk, a violation of the exclusion 

restriction criterion. Colocalization was incorporated as a sensitivity analysis to provide supporting 

evidence to the MR associations and to reduce the likelihood that associations were biased due to 

genetic confounding by LD.  

There were several limitations to these analyses. The single-cell eQTL dataset of eight cell 

types adjusted for MS, AD, control, or other AD traits. This can potentially induce collider bias if 

expression of any of the genes examined is a cause of MS, AD, or "other AD traits". In this case 

genetically-proxied expression could become correlated with another cause of any of these conditions. 

Whereby if these traits (MS, AD, control, or other) also associate with glioma risk, then this can give 

the illusion that there is an effect of expression with glioma risk. Furthermore, the single-cell database 

was comprised of 192 individuals for the single-cell analysis and 90 individuals for the microglia 

analysis. As I utilised one instrument to proxy each gene it was not possible to properly appraise 

horizontal pleiotropy using pleiotropy-robust models as these require a large number of instruments. 

Consequently, these analyses cannot rule out the possibility of violations of the exclusion restriction 

assumption. Additionally, statistical power was likely limited in this analysis due to the small sample 

sizes of the exposure datasets and due to the limited number of cases available in the glioma GWAS 

dataset. For some genes the low power of this analysis may have resulted in the lack of associations 

observed between gene expression and alternative splicing with glioma risk. Future analysis should 

make use of larger single-cell eQTL data sets to increase the number of instruments used to proxy 

each gene to enhance instrument strength. The inclusion of stronger instruments for genetically 
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proxied gene expression can be used to decipher if the lack of associations reported here reflect true 

null associations or low power. Furthermore, analyses were restricted to Europeans and therefore 

generalisability of findings to non-European populations is unclear. Finally, effect estimates assume 

linear and time-fixed effects and absence of gene-environment and gene-gene interactions.  
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6.5.1 Conclusion 

In this chapter, MR and colocalization were applied to a single-cell context to examine brain 

cell type-specific regulatory mechanisms and glioma risk. These analyses confirm previously reported 

associations for four of the five genes identified in this chapter (POLRF2, TGFA, PICK1, gene antisense 

to TXNDC11), with two in a direction opposite to that reported in bulk RNA-sequencing data. This 

comprehensive MR analysis implicated oligodendrocyte-specific expression of 1 novel gene, CEP70, in 

glioma aetiology. I have demonstrated that gene expression differs between brain cell types in glioma 

development. In addition, single-cell RNA-sequencing is more likely to capture the biological role of 

gene expression as the cell type it is expressed in is more likely to reflect the gene function. For 

instance, TXNDC11 expression is reported to regulate the immune microenvironment of glioma. In 

this analysis the association between gene antisense to TXNDC11 expression is only observed within 

microglia, which are immune cells. Future research should make use of advances in single-cell gene 

expression and single-cell protein level data to provide further insights into cell type-specific 

mechanisms underpinning glioma onset to aid in the development of new therapeutic targets for this 

disease.  
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7 Thesis discussion and conclusion  
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7.1 Introduction  

 The overarching aim of this thesis was to better understand the causal risk factors and 

molecular pathways underpinning the development of glioma. Throughout the four results chapters, 

similar methodological techniques and outcome measures have been applied to answer four distinct 

aims. The aims were to:  

1. Establish putative risk factors that have been associated with glioma risk in observation studies. 

Appraise evidence of an association between these putative risk factors and glioma using two-

sample Mendelian randomization (MR) and polygenic risk scores (PRS). 

2. Determine if genetically proxied blood tissue DNA methylation (DNAm) is associated with 

glioma risk. To establish if DNAm is a potential mediator on the causal pathway between 

putative glioma risk factors and glioma onset.   

3. Apply a hypothesis-free approach, utilising genetic variants (i.e., cis-eQTLs) identified from bulk 

RNA to proxy gene expression in both brain and blood tissue, to identify tissue-specific gene 

expression implicated in glioma risk. 

4. Gain further insights into glioma biology by incorporating germline genetic variants strongly 

associated with single-cell gene expression and alternative splicing (i.e., single-cell eQTLs) in 

brain tissue to identify differential gene expression and alternative splicing associated with 

glioma risk.  

Across the four results chapters I found that: i) six previously reported risk factors have 

aetiological relevance in glioma risk using the inverse-variance weighted (IVW) MR method, however 

only a genetically proxied increase in telomere length showed a robust association with an increase in 

risk of glioma; ii) DNA methylation variation causally influenced glioma risk; iii) novel differential 

expression of 2 genes (CCDC88B and ESYT3) were associated with glioma risk through examination of 

brain specific gene expression; iv) the novel application of single-cell MR in glioma research identified 

cell type-specific regulatory mechanisms influencing glioma risk; and v) there was little evidence for 

the role of alternative splicing in glioma risk using the single-cell MR approach.  
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7.2 Summary of findings and contributions to the glioma literature.  

7.2.1 Testing for causality between systematically identified risk factors and glioma. 

Observational studies were systematically examined to identify putative glioma risk factors. 

This systematic search was conducted to form a hypothesis driven analysis to prioritise factors 

implicated in the aetiology of glioma. MEDLINE was utilised as a literature mining tool to retrieve all 

studies that met the search criteria. Next, genetic data from genome wide association studies (GWAS) 

were incorporated to augment causal understanding. A Mendelian randomization (MR) framework 

was implemented to assess whether associations of previously reported glioma risk factors showed 

evidence of associations with glioma or its subtypes. The aim of the MR analysis was to quantify the 

causality of the link between putative risk factors and glioma using a well-established technique that 

can overcome some of the limitations of traditional observational studies (e.g., confounding by 

environmental factors and reverse causation). Furthermore, polygenic risk scores (PRS) were used 

alongside the MR framework to ascertain if the associations were consistent when a larger number of 

genetic variants were included in the model. By exploiting a large array of summary GWAS data in an 

MR and PRS framework, a robust and comprehensive examination of factors implicated in the 

aetiology of glioma was attained.    

7.2.1.1 Contribution to the glioma literature  

 A systematic review of the published literature allowed the identification of extrinsic risk 

factors which mirrored the existing literature and formed the basis for the hypothesis driven approach. 

Next, GWAS were examined, and genetic data were extracted to proxy 36 risk factors to augment 

causal understanding of glioma risk. The use of a two-sample MR and PRS approach to appraise the 

causal relevance of these glioma-specific risk factors with glioma risk is a key novel contribution to the 

glioma literature.  

In this body of work, in agreement with the literature, MR provided robust evidence that a 

genetically proxied increase in telomere length is associated with an increase in risk of glioma and 

non-glioblastoma. Using the inverse-variance weighted method, MR provided evidence that childhood 

extreme obesity, allergic disease, low-density lipoprotein cholesterol, triglycerides and alcohol 
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consumption were aetiologically relevant in glioma risk. However, the MR estimate can be biased if 

the MR assumptions are violated, thus a suite of sensitivity analyses were applied, which showed that 

the IVW MR result was likely biased for childhood extreme obesity, allergic disease, low-density 

lipoprotein cholesterol, triglycerides and alcohol consumption.  

In contrast to the glioma literature, the IVW and the PRS found suggestive evidence (p<0.05) 

that a genetic liability to allergic disease increases risk of glioblastoma. Interrogation of the IVW result 

indicated that the MR estimate of allergic disease was likely biased. The IVW estimate for alcohol 

consumption showed ~4.42 fold increase (95% 1.07-18.30) in odds of glioma risk per standard 

deviation increase in alcohol consumption. However, this could not be replicated by MR using the 

well-known alcohol ADH1B single nucleotide polymorphism (SNP). To further investigate the finding 

of low-density lipoprotein cholesterol and triglycerides with glioma risk, I applied a multivariable 

model which found little to suggest an association between any lipid trait with glioma risk. Genetically 

proxied childhood obesity was found to increase the risk of glioma but due to the limited number of 

SNPs it was not possible to robustly appraise the presence of horizontal pleiotropy.  

There were several limitations to this analysis. For example, examining existing published 

literature to identify risk factors for glioma only elucidated existing risk factors which already show 

some evidence of an association with glioma, as a result this method suffers from publication bias. 

Furthermore, the systematic review identified 140 glioma risk factors but 104 of these could not be 

instrumented using genetic data and therefore causality could not be appraised in a two-sample MR 

setting. In addition, some risk factors (e.g., type 1 diabetes, iron levels, childhood obesity, menopause) 

were instrumented by a small number of SNPs (<10); to circumvent this I used PRS to allow the 

inclusion of more SNPs. However, this was more likely to bias the effect estimates and therefore the 

use of PRS in this setting did not provide any further insights into glioma development. I adopted this 

predefined strategy to apply PRS with the aim of increasing power, but this did not change conclusions 

of the analysis.    
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Thirty five of the 36 factors examined in Chapter 3 showed little evidence of an association 

with risk of glioma or its subtypes after sensitivity analyses had been applied. Thus, the findings from 

this analysis provide evidence that would suggest that these risk factors are not high priority for future 

research. However, a key limitation of this analysis is the limited sample size of the glioma GWAS used 

as only a small subset of the GWAS was available for the analysis (5,739 cases and 5,501 controls). 

Compared to sample size of other GWAS’s of cancer, for example, a recent breast cancer GWAS 

comprised of 130,000 cases and 113,000 controls, the glioma GWAS has very low power [584]. 

Therefore, to improve power to answer this question it would be necessary to repeat using the full 

glioma GWAS summary data and using an updated GWAS for risk factors with larger sample sizes, as 

the lack of association could be explained by insufficient power.  

7.2.2 Role of DNA methylation in the relationship between glioma related traits and glioma 

incidence 

A hypothesis-free MR and colocalization framework were employed to establish if DNAm 

variation at cytosine-guanine dinucleotides (CpG) sites were associated with risk of glioma or its 

subtypes utilising an established causal inference technique. Colocalization was applied to disentangle 

causality from confounding by linkage disequilibrium (LD). Furthermore, it is established that DNAm 

can be influenced by external stimuli and change over time [424]. Thus, a two-step MR approach was 

implemented to establish whether risk factors identified in Chapter 3 mediate their effect on glioma 

risk through DNAm. Establishing CpG sites associated with glioma risk could offer insights into the 

molecular pathways underpinning glioma development and lead to the prioritisation of biological 

pathways that may inform prevention or treatment. Mediation with aetiological relevance could 

potentially allow the development of novel therapeutic approaches, if the CpG sites could be 

therapeutically targeted either directly to modulate DNAm levels or via another mechanism impacting 

the regulation of the gene or pathway in question.   

7.2.2.1 Contribution to the glioma literature  

In Chapter 4 a hypothesis-free MR approach utilised the largest available genotyped DNAm 

consortium data source (N=32,851) and the full glioma GWAS data (12,488 cases, 18,190 controls) to 
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examine the causal relevance of DNAm in glioma risk. Colocalization was implemented to further 

uncover underlying molecular mechanisms. The combined use of a two-sample MR and colocalization 

approach to examine the causal role of DNAm in glioma risk is a unique contribution to the glioma 

literature. This approach led to the identification of novel associations between DNAm at 3 CpG sites 

and glioma risk. Functional follow up showed that the 3 CpG sites were in one genomic region 

(HEATR3), which is a known glioma risk locus. Further investigation using expression quantitative loci 

(eQTL) derived in blood tissue provided MR evidence that higher levels of gene expression of HEATR3 

(a known glioma risk locus) was associated with an increased risk of glioma and glioblastoma. An 

additional novel application of MR to glioma research was to examine if the risk factors identified in 

Chapter 3 mediated their effect on glioma risk through DNAm. MR offered little evidence to suggest 

that DNAm acts as a mediator on the causal pathway between these glioma related traits and glioma 

onset. However, I report evidence that DNAm variation at 2 of these CpG sites (cg01561092, 

cg05926943) influenced telomere length.  

The reported CpG sites and putative loci are tentative as a limited number of SNPs were 

available as instruments. As a result, it is possible that violations of the exclusion restriction 

assumption occurred. Multiple trait colocalization was applied to add more support to the potential 

for vertical pleiotropy, but I observed a low probability of colocalization between DNAm, gene 

expression and glioma. The lack of colocalization could indicate that summary association data used 

to proxy DNAm and gene expression are driven by genetic confounding or due to the EWAS capturing 

different aspects of glioma biology compared to a TWAS [331]. In addition to statistical limitations, 

the DNAm analysis presented in Chapter 4 is hindered by the lack of available DNAm data sources 

derived using brain tissue. In this analysis, DNAm was derived from blood tissue and therefore is more 

likely to be subjected to confounding by cell type composition. Increased sampling of brain tissue may 

provide more specificity to identify aetiological relevant CpG sites to potentially aid understanding of 

glioma development. Nevertheless, despite the lack of tumour specific methylation data, robust 
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associations between 3 CpG sites with glioma risk were determined in Chapter 4, generating novel 

research areas to further investigate and appraise causality in the aetiology of glioma.  

7.2.3 Tissue-specific regulatory mechanisms in glioma development 

 Genome wide association studies have successfully identified 27 genetic loci that alter glioma 

risk [337, 475]. However, translation of these findings has proven challenging because many loci are 

from non-protein coding regions and therefore the functional relevance remains unclear. The 

objective of this study was to incorporate a hypothesis-free MR and colocalization approach to 

establish differential gene expression that associates with glioma risk in a tissue-specific manner. 

Ascertainment of gene expression associated with glioma risk could provide insights into biological 

pathways implicated in the aetiology of glioma and allow for the development of preventative or 

therapeutic targets if the identified genes are also implicated in glioma progression and can be 

targeted.  

7.2.3.1 Contribution to the glioma literature  

An MR and colocalization framework provided evidence that differential gene expression of 18 

genes in brain tissue, 2 of which were novel (CCDC88B and ESYT3), may associate with glioma or 

histologically stratified risk. In the blood tissue-specific gene expression analysis, MR and 

colocalization provided evidence that expression of 7 genes may associate with glioma or subtype risk. 

The tissue-specific MR approach indicated that the gene-glioma association differed depending upon 

where the gene expression was measured. A strength of this analysis was the use of brain specific 

gene expression data which is more likely relevant to the aetiology of glioma. Here, evidence from 

prior studies was corroborated as MR and colocalization provided evidence to support the role of 7 

genes previously reported in the glioma literature.  

Nevertheless, there were limitations that need to be considered when interpreting these 

findings. As there were a limited number of genetic variants available to proxy differential gene 

expression, it was not possible to properly distinguish between vertical and horizontal pleiotropy, 

therefore the reported findings are tentative. However, this analysis presented in Chapter 5 built upon 
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previous research by incorporating a combined MR and colocalization framework to further ascertain 

the role of gene expression in the aetiology of glioma by allowing a greater emphasis on causality than 

prior research  [473, 492]. 

7.2.4 Single-cell gene expression to identify differential gene expression and alternative splicing 

within specific brain cell types implicated in the aetiology of glioma. 

 Glioma displays genetic heterogeneity. In addition, it has been reported that eQTL effects may 

be cell type-specific [516, 517]. Therefore, to expand on the findings shown in Chapter 5 I further 

refined the cellular context in which genetic variants differentially influence gene expression and 

showed how this may relate to glioma risk. Furthermore, alternative splicing (AS) increases the 

diversity of transcripts and is believed to play a key role in the progression of glioblastoma, with new 

splicing isoforms resulting in several malignant phenotypes [286, 287]. Nevertheless, despite 

accumulating evidence of the role of AS in glioblastoma, research is still limited. Thus, I aimed to 

enhance our understanding of AS in glioma development using splicing quantitative trait loci (sQTL) in 

an MR and colocalization framework. Examining the role of single-cell gene expression and alternative 

splicing with glioma risk could shed light on the regulatory pathways underpinning glioma.   

7.2.4.1 Contribution to the glioma literature  

Most MR studies examining the role of gene expression have focused on using eQTL data derived 

from bulk-RNA sequencing. To the best of my knowledge, no study has used MR to systematically 

evaluate causal relationships between differential gene expression and alternative splicing with 

cancer risk using tissue-specific single-cell RNA-sequencing data. Thus, the use of a two-sample MR 

and colocalization framework to ascertain cell type-specific regulatory mechanisms implicated in the 

aetiology of glioma is a core strength and a novel addition to the glioma literature. Moreover, MR is 

less likely to be biased by confounding and reverse causation which are typically hard to eradicate in 

observational studies. Thus, this analysis reports robust findings to augment the role of four genes 

with prior evidence of an association with glioma and provides evidence of a novel association 

between oligodendrocyte-specific CEP70 expression with glioma risk. However, due to the limited 

number of instruments to proxy each gene and isoform transcript, the robustness of the MR estimate 



 

232 
 

is uncertain and conclusive causal inference cannot be drawn from these findings. Furthermore, the 

single-cell eQTL dataset included 196 individuals and the single-cell sQTL comprised of 90 individuals, 

thus the power to identify single-cell eQTLs and sQTLs was reduced. The small sample size of this 

exposure dataset increases uncertainty in the estimated effect of the SNP on gene expression or 

alternative splicing, which can bias the estimated effect of the gene expression or alternative splicing 

association with glioma. The field of single-cell RNA-sequencing is emerging as larger datasets become 

available. This will allow for better powered studies to further examine the role of gene expression 

and alternative splicing in the aetiology of glioma.  
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7.3 Future work  

 There are numerous possible extensions to the findings presented in this thesis. An important 

strength of this thesis was the capability to use a causal inference technique to examine the 

associations of putative risk factors with glioma, many of which had not previously been examined in 

a causal framework. As more GWAS become available, hypothesis-free MR can be utilised to 

interrogate the associations between a vast number of phenotypes and glioma risk. The development 

of GWAS to identify SNPs that are associated with omic traits (e.g., gene expression, methylation levels, 

protein levels) will allow for further insights into glioma aetiology.  

Expanding on the analysis presented in Chapter 3, there are known genetic differences 

between glioma subtypes which could suggest different aetiological drivers. However, a frequent 

limitation throughout this thesis is the lack of granularity in the glioma GWAS data. Unpicking this 

heterogeneity of the glioma GWAS to get well defined subtypes is crucial to find novel associations. 

Thus, increased sample size and access to a more granular diagnosis of the glioma GWAS (i.e., detailed 

diagnosis rather than glioblastoma or non-glioblastoma) will allow for more opportunities to identify 

aetiologically informative subtype differences. Furthermore, the systematic search to identify putative 

risk factors could be repeated to group risk factors for each glioma subtype. Using the grouped risk 

factors and more granular glioma GWAS the molecular mechanisms that drive each glioma subtype 

could be examined.  

 Future developments in the use of MR will allow for the ability to distinguish between factors 

that associate with disease risk and factors that associate with glioma progression [228]. This will allow 

for an increased opportunity to develop targeted therapeutic options (causal factors that associate 

with progression may be more fruitful therapeutic targets than causal factors that associate with risk). 

Furthermore, understanding how a risk factor differentially affects risk and progression can have 

important implications for individuals diagnosed with glioma. For instance, knowledge of whether 

alcohol consumption influences glioma risk and/or progression could represent an important 

distinction for those with glioma. If a dietary factor influences glioma risk but then has no impact on 
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progression, then individuals with glioma are unlikely to see disease specific benefit if they prioritise 

changing consumption of the specific dietary factor. Additionally, it is possible that the risk factors that 

influence glioma risk differ to those influencing glioma progression, therefore, the MR approach 

applied in Chapter 3 should be repeated to examine causal risk factors for glioma progression. 

However, this emerging field of progression MR is constrained by data availability (e.g., progression 

glioma GWAS) and is not viable in this specific setting at the current time.  

 In Chapter 3, I found some evidence of an association with alcohol consumption and glioma 

risk but I failed to replicate this association using the well-known ADH1B SNP, rs1229984, that encodes 

a key enzyme implicated in the metabolism of alcohol [420]. However, as genetic variants have a 

limited impact on alcohol consumption in European populations, MR analyses cannot as easily 

distinguish between the effects of moderate alcohol consumption and zero alcohol consumption [585]. 

Future analyses could repeat this MR analysis in different ethnic groups and make use of other data 

sources such as the China Kadoorie biobank [586] to establish if alcohol consumption is associated 

with glioma risk in east Asian populations, where well characterised genetic variants that are strongly 

associated with alcohol consumption exist (ALDH2 and ADH1B).  

 In addition, it is possible that associations between various putative risk factors, namely 

vitamin D, body mass index and lipids with glioma may be non-linear and vary over time. However, 

the MR framework employed in Chapter 3 could not detect non-linear associations. Emerging non-

linear MR methods are becoming more widely available which can be used to explore the shape of 

the associations between a risk factor and an outcome using IVs [587]. Future studies should make 

use of non-linear MR methods to investigate time-varying risk factors.  

It would be interesting to compare the DNA methylation sources (e.g., blood and brain) to 

establish their aetiological relevance in glioma risk. A limitation of the analysis in Chapter 4 is the lack 

of epigenetic data derived from brain tissue. Improved sampling of tissues that are relevant to the 

aetiology, such as brain tissue, will enhance the analysis framework examining the role of DNAm in 
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the aetiology of glioma. Although I investigated the overlap between DNAm and gene expression at 

aetiologically relevant CpG sites, as the size of ‘omic’ databases increase (e.g., gene expression in brain 

tissue, protein abundance) there will be an increased ability to elucidate molecular pathways 

underpinning glioma development.  

A key limitation of Chapter 4 was the inability to properly appraise horizontal pleiotropy due to 

the limited number of SNPs available to proxy DNA methylation. Future research would require more 

granular DNAm data to allow for multiple SNP instruments. To generate more granular DNAm data it 

is vital to better understand the relationship between trans-mQTLs and methylation variable sites. 

However, currently the GWAS power to map these trans-mQTLs with confidence is lacking as the 

trans-mQTLs are known to have very small effects. This is an exciting field and is continuing to be 

developed.  

At the time of this thesis being undertaken there were no human brain protein QTLs available that 

overlapped with the eQTLs that were utilised as proxies for the top MR findings in the single-cell MR 

analysis in Chapter 6. The identification of instrumental variables derived from both bulk RNA-

sequencing and single-cell RNA-sequencing to proxy protein abundance are required, to ascertain if 

causal genes associate with glioma risk at both the gene expression level and at the protein abundance 

level. This analysis would provide more evidence to support the vertical pleiotropy model, as in 

Chapter 6, given the limited number of SNPs it was not possible to differentiate between vertical and 

horizontal pleiotropy. Furthermore, as proteins represent most current druggable targets this could 

offer novel therapeutic strategies.  

Finally, future analyses can make use of other complementary methods to provide further 

evidence of associations and insights into the aetiology of glioma, for example proteomics analyses. 

Differential proteomic profiling of glioma versus healthy tissue enables the potential identification of 

biomarkers [588]. Furthermore, proteomic analyses can make use of proximal fluid which more 

accessible that tumour tissue but can still potentially provide insights into the aetiology of glioma. 
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Although proteomic analyses within neuro-oncology are emerging and have identified potential 

biomarkers [589, 590] there are still key limitations which need to be addressed. Such as, ensuring 

reproducible detection and low statistical power resulting from small sample sizes. The use of 

proteomics alongside MR could provide an independent way to valid MR findings and triangulate 

results.  
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7.4 Conclusion  

 The analyses performed in this thesis demonstrate the ability to use genetic data in a causal 

framework to improve understanding of the aetiology of glioma. It has highlighted the utility of two-

sample MR, using genetic variants associated with putative risk factors, to ascertain associations 

between risk factors and glioma risk. An increased genetically proxied telomere length was shown to 

be associated with glioma risk, thus supporting prior studies. However, 104 of the systematically 

identified risk factors could not be examined in an MR framework due to the lack of genetic variants. 

By incorporating epigenetic data, 3 CpG sites (cg01561092, cg05926943, cg01584448) causally 

relevant to the aetiology of glioma were established. Functional follow up identified that the CpG sites 

were in one genomic region (HEATR3), which is a known glioma risk locus, providing further insights 

into the molecular pathways underpinning glioma. A two-step MR approach found little evidence that 

the 6 risk factors with IVW MR evidence in Chapter 3 mediated their effect on glioma through DNAm. 

Tissue-specific gene expression highlighted that gene expression-glioma associations differed 

depending on the tissue examined, suggesting associations between gene expression and glioma 

depend upon the tissue examined. Lastly, single-cell RNA-sequencing data provided a deeper insight 

into cell specific regulatory pathways with aetiological relevance. As the field of single-cell RNA-

sequencing grows, larger datasets will become available, which will allow for a greater understanding 

of cell type-specific effects influencing glioma risk. On reflection, the framework utilised in this thesis 

has augmented the causal and molecular understanding of glioma aetiology beyond that of the 

existing literature. The use of MR and colocalization have provided the opportunity to utilise genetic 

data to improve causal knowledge and focus future efforts on molecular pathways. Reported 

associations from this thesis can be validated with the use of complementary methodologies, such as 

proteomic analyses to triangulate findings.  
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