7,792 research outputs found

    Flame resistant elastic elastomeric fibers

    Get PDF
    Development of materials to improve flame resistance of elastic elastomeric fibers is discussed. Two approaches, synthesis of polyether based urethanes and modification of synthesized urethanes with flame ratardant additives, are described. Specific applications of both techniques are presented

    Does the far-infrared/radio correlation in spiral galaxies extend to the spatial domain

    Get PDF
    A comparison is made between the spatial distribution of the thermal far-infrared and non-thermal radio emission of nearby spiral galaxies. This is done in an attempt to improve our understanding of the well known correlation between the integrated Infrared Astronomy Satellite (IRAS) far-infrared and radio emission of spiral galaxies, e.g., de Jong et al., 1985, Helou et al., 1986. A physical explanation for this correlation is not straight forward due to the ambiguous nature of the origin of the far-infrared and radio, and the dependence of the non-thermal radio on each galaxies' magnetic field. It is now widely believed that the infrared emission detected in the longer wavelength IRAS wavebands (less than 50 microns) arises from at least two distinct sources, e.g., Cox et al., 1986, Persson and Helou, 1987: (1) a warm (T approx. 40 K) component associated with dense dust clouds heated by embedded O and B type stars; and (2) a cooler (T approx. 20 K) component associated with diffuse dust distributed throughout the interstellar matter (ISM) heated by the interstellar radiation field. A link between the warm component and the radio via electrons originating in Type II supernovae (the ultimate fate of many of the O and B type stars responsible for the warm component) has been suggested by numerous authors. The supporting evidence is scarce and inconclusive. Researchers have attempted to provide some insight into the problem by looking at the spatial distribution of the different components in some nearby spiral galaxies, starting with the face-on spiral M51. The source of the far-infrared data is the IRAS chopped photometric channel (CPC) instrument. Warm and cold far-infrared fluxes integrated over all wavelengths and the radio intensity at two frequencies are plotted against radius. All plots are to a common resolution of 100 arcsec, the radio data originating from the Cambridge Low Frequency Synthesis Telescope (151 MHz) and the VLA (1490 MHz, from Condon, 1987). The warm and cold regions are assumed to be representedby a single galactic wide temperatures of 50 K and 20 K respectively. A dust emissivity of 1 has been assumed. The form of the plots is little effected by varying these assumptions. The radio and cold component curves appear to follow each other most closely, in contradiction to the simple OB star/type II supernovae hypothesis

    Flame retardant spandex type polyurethanes

    Get PDF
    Flame retardant elastomeric compositions were developed, comprised of: (1) spandex type polyurethane having incorporated into the polymer chain, halogen containing polyols; (2) conventional spandex type polyurethanes in physical admixture flame retardant additives; and (3) fluoroelastomeric resins in physical admixture with flame retardant additives. Methods of preparing fibers of the flame retardant elastomeric materials are presented and articles of manufacture comprised of the elastomeric materials are mentioned

    Flame resistant elastic elastomeric fiber

    Get PDF
    Compositions exhibit elastomeric properties and possess various degrees of flame resistance. First material polyurethane, incorporates halogen containing polyol and is flame resistant in air; second contains spandex elastomer with flame retardant additives; and third material is prepared from fluorelastomer composition of copolymer of vinylidene fluoride and hexafluoropropylene

    Non-flammable elastomeric fiber from a fluorinated elastomer and containing an halogenated flame retardant

    Get PDF
    Flame retardant elastomeric compositions are described comprised of either spandex type polyurethane having incorporated into the polymer chain halogen containing polyols, conventional spandex type polyurethanes in physical admixture with flame retardant additives, or fluoroelastomeric resins in physical admixture with flame retardant additives. Methods are described for preparing fibers of the flame retardant elastomeric materials and articles of manufacture comprised of the flame retardant clastomeric materials and non elastic materials such as polybenzimidazoles, fiberglass, nylons, etc

    Development of a flameproof elastic elastomeric fiber

    Get PDF
    Various flexible polyurethane structures containing halogen were synthesized from polyesters derived from aliphatic or aromatic polyols and dibasic acids. Aliphatic halide structures could not be used because they are unstable at the required reaction temperatures, giving of hydrogen halide which hydrolyzes the ester linkages. In contract, halogen-containing aromatic polyols were stable and satisfactory products were made. The most promising composition, a brominated neopentyl glycol capped with toluene disocyanate, was used as a conventional diisocyanate, in conjunction with hydroxy-terminated polyethers or polyesters to form elastomeric urethanes containing about 10% bromine with weight. Products made in this manner will not burn in air, have an oxygen index value of about 25, and have tensile strength values of about 5,000 psi at 450% elongation. The most efficient additives for imparting flame retardancy to Spandex urethanes are aromatic halides and the most effective of these are the bromide compounds. Various levels of flame retardancy have been achieved depending on the levels of additives used

    Surface abundances of ON stars

    Get PDF
    Massive stars burn hydrogen through the CNO cycle during most of their evolution. When mixing is efficient, or when mass transfer in binary systems happens, chemically processed material is observed at the surface of O and B stars. ON stars show stronger lines of nitrogen than morphologically normal counterparts. Whether this corresponds to the presence of material processed through the CNO cycle or not is not known. Our goal is to answer this question. We perform a spectroscopic analysis of a sample of ON stars with atmosphere models. We determine the fundamental parameters as well as the He, C, N, and O surface abundances. We also measure the projected rotational velocities. We compare the properties of the ON stars to those of normal O stars. We show that ON stars are usually helium-rich. Their CNO surface abundances are fully consistent with predictions of nucleosynthesis. ON stars are more chemically evolved and rotate - on average - faster than normal O stars. Evolutionary models including rotation cannot account for the extreme enrichment observed among ON main sequence stars. Some ON stars are members of binary systems, but others are single stars as indicated by stable radial velocities. Hence, mass transfer is not a simple explanation for the observed chemical properties. We conclude that ON stars show extreme chemical enrichment at their surface, consistent with nucleosynthesis through the CNO cycle. Its origin is not clear at present.Comment: 18 pages, 10 figures (+ appendix). A&A accepte

    Effects of Brief Mindfulness-Based Interventions on Health-Related Outcomes: a Systematic Review

    Get PDF
    Objectives Traditional mindfulness-based interventions (MBIs) have been applied successfully across many populations. The time commitment for these programs is often a barrier, and while brief MBIs have become popular, the impact of these on health-related outcomes is unclear as they have not yet been reviewed. Methods A search of databases, including Medline, Embase, and PsycINFO, was conducted with qualitative and case studies being excluded. Findings were summarized using a narrative approach for all studies that met the inclusion criteria. Results With one exception, all 85 studies that were included were randomized controlled trials and were relatively robust methodologically. Seventy-nine reported significant positive effects on at least one health-related outcome and over a quarter targeted a clinical population. The majority of studies focused on psychological outcomes, such as anxiety and depression, as well as emotion regulation, stress, and cognitive outcomes. Conclusions Despite heterogeneity of outcomes across studies, there is evidence that brief MBIs can impact numerous health-related outcomes, after only one session and with interventions as brief as 5 min. These interventions have the potential to be the initial steps leading to sustainable and positive health outcomes

    A CNO Dichotomy among O2 Giant Spectra in the Magellanic Clouds

    Get PDF
    From a survey of the 3400 Å region in the earliest O-type spectra, we have found that two of the four O2 giants observed in the Large Magellanic Cloud have O IV lines there that are stronger than the N IV lines, while the other two have the opposite. A Small Magellanic Cloud counterpart also has N IV stronger than O IV. Inspection of the blue spectra of these stars shows that the former pair have weaker N lines in all ionization states (III, IV, and V) present as well as lines of C IV λ4658, while the latter three have stronger N lines and greater He/H. Space ultraviolet observations of two of the N-strong stars show N V wind profiles substantially stronger than those of C IV, while in the N-weak stars the C IV features are equal to or stronger than the N V. The N-strong stars are now reclassified as ON2 III(f*), newly defining that category. These characteristics strongly suggest a larger fraction of processed material in the atmospheres of the ON2 stars, which we confirm by modeling the optical spectra. In the context of current models, it is in turn implied that the ON2 stars are in a more advanced evolutionary state than the others, and/or that they had higher initial rotational velocities. The recent formulation of the effects of rotation on massive stellar evolution introduces an additional fundamental parameter, which the CNO abundances are in principle able to constrain. We present some illustrative comparisons with current Geneva evolutionary models for rotating massive stars. It is possible that these very hot, nitrogen-rich objects are products of homogeneous evolution. Our results will provide motivation for further physical modeling of the atmospheres and evolutionary histories of the most massive hot stars.Fil: Walborn, Nolan Revere. Space Telescope Science Institute; Estados UnidosFil: Morrell, Nidia Irene. Las campanas observatory; ChileFil: Howarth, Ian D.. University College London; Estados UnidosFil: Crowther, Paul A.. University of Sheffield; Reino UnidoFil: Lennon, Daniel J.. Isaac Newton Group of Telescopes; EspañaFil: Massey, Philip. Lowell Observatory; Estados UnidosFil: Arias, Julia Ines. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentin
    • …
    corecore