424 research outputs found

    Hybrid Speciation in a Marine Mammal: The Clymene Dolphin (Stenella clymene)

    Get PDF
    Natural hybridization may result in the exchange of genetic material between divergent lineages and even the formation of new taxa. Many of the Neo-Darwinian architects argued that, particularly for animal clades, natural hybridization was maladaptive. Recent evidence, however, has falsified this hypothesis, instead indicating that this process may lead to increased biodiversity through the formation of new species. Although such cases of hybrid speciation have been described in plants, fish and insects, they are considered exceptionally rare in mammals. Here we present evidence for a marine mammal, Stenella clymene, arising through natural hybridization. We found phylogenetic discordance between mitochondrial and nuclear markers, which, coupled with a pattern of transgressive segregation seen in the morphometric variation of some characters, support a case of hybrid speciation. S. clymene is currently genetically differentiated from its putative parental species, Stenella coerueloalba and Stenella longisrostris, although low levels of introgressive hybridization may be occurring. Although non-reticulate forms of evolution, such as incomplete lineage sorting, could explain our genetic results, we consider that the genetic and morphological evidence taken together argue more convincingly towards a case of hybrid speciation. We anticipate that our study will bring attention to this important aspect of reticulate evolution in non-model mammal species. The study of speciation through hybridization is an excellent opportunity to understand the mechanisms leading to speciation in the context of gene flow.info:eu-repo/semantics/publishedVersio

    Oceanographic drivers of population differentiation in Indo-Pacific bottlenose (Tursiops aduncus) and humpback (Sousa spp.) dolphins of the northern Bay of Bengal

    Get PDF
    The Bay of Bengal is one of the most productive ecosystems in the northern Indian Ocean and it harbours a rich community of cetaceans, including Indo-Pacific bottlenose (Tursiops aduncus) and humpback (Sousa spp.) dolphins. The taxonomy of these genera has been controversial, but within the Indian Ocean both seem to be divided into phylogenetically discrete units that range from the east to the west. Within the Sousa genus, S. plumbea is distributed in the western Indian Ocean while S. chinensis is distributed in the eastern Indian and western Pacific Ocean. T. aduncus has a discontinuous distribution throughout the Indo-Pacific Ocean and two different phylogenetic units are known to exist, one along the eastern African coast and another one in the eastern Indian and west Pacific Ocean. In this study we investigate the phylogeography of Indo-Pacific humpback and bottlenose dolphins in the northern Bay of Bengal. We sequenced the mitochondrial DNA control region for 17 bottlenose and 15 humpback dolphins and compared the results with previously published sequences within each genus. In both cases, we found that Bangladesh dolphins are genetically different from neighbouring populations. While the Bangladesh T. aduncus seem to be more closely related to the African T. aduncus form than the Pacific form, Sousa spp. seem to be more closely related to individuals from Australia. The genetic uniqueness of these populations has important evolutionary implications, due to their isolation, coastal distribution in a geographic cul-de-sac characterized by an extreme infusion, redistribution and recycling of biological productivity, and conservation implications since their survival is threatened in particular by fatal interactions with fisheries. We suggest that the particular and extreme oceanographic conditions found in the Bay of Bengal may be driving speciation in these dolphins and other marine megafauna.info:eu-repo/semantics/publishedVersio

    Using Environmental DNA to Detect Whales and Dolphins in the New York Bight

    Get PDF
    Determining how cetaceans and other threatened marine animals use coastal habitats is critical to the effective conservation of these species. Environmental DNA (eDNA) is an emerging tool that can potentially be used to detect cetaceans over broad spatial and temporal scales. In particular, eDNA may present a useful complementary method for monitoring their presence during visual surveys in nearshore areas, and for co-detecting prey. In conjunction with ongoing visual surveys, we tested the ability of eDNA metabarcoding to detect the presence and identity of cetaceans in the New York Bight (NYB), and to identify fish species (potential prey) present in the area. In almost all cases in which humpback whales and dolphins were visually observed, DNA from these species was also detected in water samples. To assess eDNA degradation over time, we took samples in the same location 15 and 30min after a sighting in seven instances, and found that eDNA often, but not always, dropped to low levels after 30min. Atlantic menhaden were detected in all samples and comprised the majority of fish sequences in most samples, in agreement with observations of large aggregations of this important prey species in the NYB. While additional data are needed to better understand how factors such as behavior and oceanographic conditions contribute to the longevity of eDNA signals, these results add to a growing body of work indicating that eDNA is a promising tool to complement visual and acoustic surveys of marine megafauna

    Marine seismic surveys and ocean noise : time for coordinated and prudent planning

    Get PDF
    Marine seismic surveys use intense (eg >= 230 decibel [dB] root mean square [RMS]) sound impulses to explore the ocean bottom for hydrocarbon deposits, conduct geophysical research, and establish resource claims under the United Nations Convention on the Law of the Sea. The expansion of seismic surveys necessitates greater regional and international dialogue, partnerships, and planning to manage potential environmental risks. Data indicate several reasons for concern about the negative impacts of anthropogenic noise on numerous marine species, including habitat displacement, disruption of biologically important behaviors, masking of communication signals, chronic stress, and potential auditory damage. The sound impulses from seismic surveys - spanning temporal and spatial scales broader than those typically considered in environmental assessments - may have acute, cumulative, and chronic effects on marine organisms. Given the international and transboundary nature of noise from marine seismic surveys, we suggest the creation of an international regulatory instrument, potentially an annex to the existing International Convention on the Prevention of Pollution from Ships, to address the issue.Publisher PDFPeer reviewe

    Does temporal and spatial segregation explain the complex population structure of humpback whales on the coast of West Africa?

    Get PDF
    Humpback whales (Megaptera novaeangliae) in the Southeastern Atlantic Ocean (International Whaling Commission ‘Breeding Stock B’—BSB) are distributed from the Gulf of Guinea to Western South Africa. Genetic data suggest that this stock may be sub-structured, but it remains unknown if this is due to reproductive segregation. This paper evaluates the spatial and temporal population structure of BSB humpback whales using a combination of maternally and bi-parentally inherited markers. The genetic differentiation that we identify in this study could be due to a combination of (1) spatial and/or temporal segregation on breeding grounds in the greater Gulf of Guinea, (2) the possibility of maternally inherited site fidelity to specific feeding grounds and (3) the use of two generalized but exclusive migratory routes (coastal and offshore) between feeding and breeding areas. Further, photo-identification and genetic sampling efforts in other areas of the Sub-Saharan Western Africa winter range and targeted deployment of satellite tags would help to clarify some of the apparent complexity in the population structure of animals biopsied in this region.National Research Foundation (South Africa) under Grant Number 2053539. I. Carvalho was supported by a PhD scholarship (SFRH/BD/18049/2004), from the Portuguese Foundation for Science and Technology (Fundação para a Ciência e Tecnologia—FCT).http://link.springer.com/journal/227hb201

    Non-monotonic variation with salt concentration of the second virial coefficient in protein solutions

    Full text link
    The osmotic virial coefficient B2B_2 of globular protein solutions is calculated as a function of added salt concentration at fixed pH by computer simulations of the ``primitive model''. The salt and counter-ions as well as a discrete charge pattern on the protein surface are explicitly incorporated. For parameters roughly corresponding to lysozyme, we find that B2B_2 first decreases with added salt concentration up to a threshold concentration, then increases to a maximum, and then decreases again upon further raising the ionic strength. Our studies demonstrate that the existence of a discrete charge pattern on the protein surface profoundly influences the effective interactions and that non-linear Poisson Boltzmann and Derjaguin-Landau-Verwey-Overbeek (DLVO) theory fail for large ionic strength. The observed non-monotonicity of B2B_2 is compared to experiments. Implications for protein crystallization are discussed.Comment: 43 pages, including 17 figure

    Transit station or destination? Attendance patterns, movements, and abundance estimate of humpback whales off west South Africa from photographic and genotypic matching

    Get PDF
    Humpback whales found off west South Africa (WSA) are known to display an atypical migration that may include temporary residency and feeding during spring and summer. At a regional scale there is uncertainty about how these whales relate to the greater West African Breeding Stock B as a whole, with evidence both for and against its division into two sub-stocks. A database containing sighting information of humpback whales intercepted by boat in the WSA region from 1983 to 2008 was compiled. It included a total of 1,820 identification images of ventral tail flukes and lateral views of dorsal fins. After systematic within- and between-year matching of images of usable quality, it yielded 154 different individuals identified by tail flukes (TF), 230 by left dorsal fins (LDF), and 237 by right dorsal fins (RDF). Microsatellite (MS) matching of 216 skin biopsies yielded 156 individuals. By linking all possible sightings of the same individuals using all available identification features, the periodicity and seasonality of 281 individual whales were examined. Sixty whales were resighted on different days of which 44 were between different calendar years. The most resightings for one individual was 11 times, seen in six different years, while the longest interval between first and last sightings was about 18 years. A resighting rate of 15.6% of whales at intervals of a year or more indicates long-term fidelity to the region. Shorter intervals of 1 – 6 months between sequential sightings in the same year may suggest temporary residency. The TF image collection from WSA was compared to TF collections from four other regions, namely Gabon, Cabinda (Angola), Namibia and the Antarctic Humpback Whale Catalogue (AHWC). Three matches were detected were between WSA (in late spring or summer) and Gabon (in winter), confirming direct movement between these regions. The capture-recapture data of four different identification features (TF, RDF, LDF and MS) from six successive subsets of data from periods with the highest collection effort (2001 – 2007), were used to calculate the number of whales that utilise the region, using both closed and open-population models. Since dorsal fins have never been used to estimate abundance for humpback whales, the different identification features were evaluated for potential biases. This revealed 9 – 14% incidence of missed matches (false negatives) when using dorsal fins that will result in an overestimate, while variation in individual fluke-up behaviour may lower estimates due to heterogeneity of individual capture probability, by as much as 57-69%. Taking into consideration the small dataset and low number of recaptures, the most consistent and precise results were obtained from a fully time-dependent version of the Jolly-Seber open-population model, with annual survival fixed at 0.96, using the MS dataset. This suggests that the WSA feeding assemblage during the months of spring and summer of the study period numbered about 500. The relationship of these whales to those (perhaps strictly migratory) that may occur here in other seasons of the year, and their links to possible migratory routes and other feeding or breeding areas remain uncertain.National Research Foundation (NRF), South Africa, under Grant Number 2047517. Earthwatch Institute (funding), The Mazda Wildlife Fund (through the provision of a field vehicle), SASOL (through the donation of two four-stroke engines), PADI Project AWARE (UK) (funding), the South African Navy (access to the shore-based look-out), the Military Academy, University of Stellenbosch (accommodation) and Iziko South African Museum (office space and support). JB gratefully received financial support in the form of bursaries from the NRF, the Society for Marine Mammalogy, University of Pretoria, and the Wildlife Society of South Africa (Charles Astley Maberley Memorial bursary). The Namibian Dolphin Project is supported by NACOMA (Namibian Coastal Conservation and Management Project), the Nedbank Go Green Fund, Mohammed bin Zayed Species Conservation Fund, the British Ecological Society, the Rufford Small Grants Foundation and the Namibia Nature Foundation. JB and TJQC received funding from the International Whaling Commission (IWC) to conduct between-region matching.http://www.tandfonline.com/loi/tams20nf201

    First circumglobal assessment of Southern Hemisphere humpback whale mitochondrial genetic variation and implications for management

    Get PDF
    The description of genetic population structure over a species\u27 geographic range can provide insights into its evolutionary history and also support effective management efforts. Assessments for globally distributed species are rare, however, requiring significant international coordination and collaboration. The global distribution of demographically discrete populations for the humpback whale Megaptera novaeangliae is not fully known, hampering the definition of appropriate management units. Here, we present the first circumglobal assessment of mito - chondrial genetic population structure across the species\u27 range in the Southern Hemisphere and Arabian Sea. We combine new and existing data from the mitochondrial (mt)DNA control region that resulted in a 311 bp consensus sequence of the mtDNA control region for 3009 individuals sampled across 14 breeding stocks and subpopulations currently recognized by the International Whaling Commission. We assess genetic diversity and test for genetic differentiation and also estimate the magnitude and directionality of historic matrilineal gene flow between putative populations. Our results indicate that maternally directed site fidelity drives significant genetic population structure between breeding stocks within ocean basins. However, patterns of connectivity differ across the circumpolar range, possibly as a result of differences in the extent of longitudinal movements on feeding areas. The number of population comparisons observed to be significantly differentiated were found to diminish at the subpopulation scale when nucleotide differences were examined, indicating that more complex processes underlie genetic structure at this scale. It is crucial that these complexities and uncertainties are afforded greater consideration in management and regulatory efforts

    The hippocampus and entorhinal cortex encode the path and Euclidean distances to goals during navigation

    Get PDF
    BACKGROUND Despite decades of research on spatial memory, we know surprisingly little about how the brain guides navigation to goals. While some models argue that vectors are represented for navigational guidance, other models postulate that the future path is computed. Although the hippocampal formation has been implicated in processing spatial goal information, it remains unclear whether this region processes path- or vector-related information. RESULTS We report neuroimaging data collected from subjects navigating London's Soho district; these data reveal that both the path distance and the Euclidean distance to the goal are encoded by the medial temporal lobe during navigation. While activity in the posterior hippocampus was sensitive to the distance along the path, activity in the entorhinal cortex was correlated with the Euclidean distance component of a vector to the goal. During travel periods, posterior hippocampal activity increased as the path to the goal became longer, but at decision points, activity in this region increased as the path to the goal became closer and more direct. Importantly, sensitivity to the distance was abolished in these brain areas when travel was guided by external cues. CONCLUSIONS The results indicate that the hippocampal formation contains representations of both the Euclidean distance and the path distance to goals during navigation. These findings argue that the hippocampal formation houses a flexible guidance system that changes how it represents distance to the goal depending on the fluctuating demands of navigation
    • …
    corecore