295 research outputs found
Sampling-Based Coverage Path Planning for Inspection of Complex Structures
We present several new contributions in sampling-based coverage path planning, the task of finding feasible paths that give 100% sensor coverage of complex structures in obstacle-filled and visually occluded environments. First, we establish a framework for analyzing the probabilistic completeness of a sampling-based coverage algorithm, and derive results on the completeness and convergence of existing algorithms. Second, we introduce a new algorithm for the iterative improvement of a feasible coverage path; this relies on a sampling-based subroutine that makes asymptotically optimal local improvements to a feasible coverage path based on a strong generalization of the RRT algorithm. We then apply the algorithm to the real-world task of autonomous in-water ship hull inspection. We use our improvement algorithm in conjunction with redundant roadmap coverage planning algorithm to produce paths that cover complex 3D environments with unprecedented efficiency.United States. Office of Naval Research (ONR Grant N0014-06-10043
Multi-Goal Feasible Path Planning Using Ant Colony Optimization
A new algorithm for solving multi-goal planning problems in the presence of obstacles is introduced. We extend ant colony optimization (ACO) from its well-known application, the traveling salesman problem (TSP), to that of multi-goal feasible path planning for inspection and surveillance applications. Specifically, the ant colony framework is combined with a sampling-based point-to-point planning algorithm; this is compared with two successful sampling-based multi-goal planning algorithms in an obstacle-filled two-dimensional environment. Total mission time, a function of computational cost and the duration of the planned mission, is used as a basis for comparison. In our application of interest, autonomous underwater inspections, the ACO algorithm is found to be the best-equipped for planning in minimum mission time, offering an interior point in the tradeoff between computational complexity and optimality.United States. Office of Naval Research (Grant N00014-06-10043
Variability of cross-tissue X-chromosome inactivation characterizes timing of human embryonic lineage specification events
X-chromosome inactivation (XCI) is a random, permanent, and developmentally early epigenetic event that occurs during mammalian embryogenesis. We harness these features to investigate characteristics of early lineage specification events during human development. We initially assess the consistency of X-inactivation and establish a robust set of XCI-escape genes. By analyzing variance in XCI ratios across tissues and individuals, we find that XCI is shared across all tissues, suggesting that XCI is completed in the epiblast (in at least 6–16 cells) prior to specification of the germ layers. Additionally, we exploit tissue-specific variability to characterize the number of cells present during tissue-lineage commitment, ranging from approximately 20 cells in liver and whole blood tissues to 80 cells in brain tissues. By investigating the variability of XCI ratios using adult tissue, we characterize embryonic features of human XCI and lineage specification that are otherwise difficult to ascertain experimentally
Magnetism in SQUIDs at Millikelvin Temperatures
We have characterized the temperature dependence of the flux threading dc
SQUIDs cooled to millikelvin temperatures. The flux increases as 1/T as
temperature is lowered; moreover, the flux change is proportional to the
density of trapped vortices. The data is compatible with the thermal
polarization of surface spins in the trapped fields of the vortices. In the
absence of trapped flux, we observe evidence of spin-glass freezing at low
temperature. These results suggest an explanation for the "universal" 1/f flux
noise in SQUIDs and superconducting qubits.Comment: 4 pages, 4 figure
Underwater inspection using sonar-based volumetric submaps
We propose a submap-based technique for mapping of underwater structures with complex geometries. Our approach relies on the use of probabilistic volumetric techniques to create submaps from multibeam sonar scans, as these offer increased outlier robustness. Special attention is paid to the problem of denoising/enhancing sonar data. Pairwise submap alignment constraints are used in a factor graph framework to correct for navigation drift and improve map accuracy. We provide experimental results obtained from the inspection of the running gear and bulbous bow of a 600-foot, Wright-class supply ship.United States. Office of Naval Research (N00014-12-1-0093)United States. Office of Naval Research (N00014-14-1-0373
- …