
Multi-Goal Feasible Path Planning Using Ant Colony Optimization

Brendan Englot and Franz Hover

Abstract— A new algorithm for solving multi-goal planning
problems in the presence of obstacles is introduced. We extend
ant colony optimization (ACO) from its well-known application,
the traveling salesman problem (TSP), to that of multi-goal
feasible path planning for inspection and surveillance appli-
cations. Specifically, the ant colony framework is combined
with a sampling-based point-to-point planning algorithm; this
is compared with two successful sampling-based multi-goal
planning algorithms in an obstacle-filled two-dimensional envi-
ronment. Total mission time, a function of computational cost
and the duration of the planned mission, is used as a basis
for comparison. In our application of interest, autonomous
undewater inspections, the ACO algorithm is found to be
the best-equipped for planning in minimum mission time,
offering an interior point in the tradeoff between computational
complexity and optimality.

I. INTRODUCTION

Multi-goal planning is a task which arises in many robotics
applications, from autonomous inspection and surveillance
to manufacturing and assembly. It combines the challenging
requirements of planning feasible point-to-point trajectories
in obstacle-filled — and possibly high-dimensional — state
spaces with the complexity of combinatorial optimization.
In planning inspections and surveillance missions for sensor
coverage, several studies have solved multi-goal planning
as a variant of the Chinese postman problem (CPP), in
which a robot must sweep out a set of graph edges to
complete an inspection [1], [2], [3]. Surveillance applications
are also solved by mapping mission goals to graph nodes and
modeling the multi-goal planning problem as some variant
of the traveling salesman problem (TSP) [4], [5]. Multi-
goal problems in industrial manufacturing applications have
also been solved using the TSP, including spot welding
[6], [7] and measuring fabricated parts to ensure tolerances
have been met [8]. Additionally, TSP solutions have been
developed for robotic systems with kinodynamic constraints
[9], [10]. Although not all planning tasks require the mission
to begin and end in the same configuration, this feature of
the TSP is a useful requirement for periodic surveillance
trajectories and manufacturing tasks. We assume in this
paper that a robot’s goals — be they specific configurations
or end-effector positions — can be modeled as the nodes
of a graph, and consequently that the multi-goal planning
problem requires the solution of a TSP.

One characteristic feature of existing solution methods for
multi-goal planning is the two-step process of constructing

This work was supported by the Office of Naval Research under Grant
N00014-06-10043, monitored by Dr. T.F. Swean

B. Englot and F. Hover are with the Department of Mechanical Engineer-
ing, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cam-
bridge MA 02139 USA benglot@mit.edu hover@mit.edu

a graph in a robot’s configuration space, followed by the
construction of a tour which visits all of the goals on this
graph. This is the approach we will take in this paper.
In obstacle-filled environments with many goals, however,
constructing a graph which describes feasible paths over all
goal-to-goal pairings is a costly task. To decide which goal-
to-goal pairings are collision-checked, and subsequently, to
compute an efficient tour over the resulting feasible paths,
we will use Ant Colony Optimization (ACO).

ACO is an evolutionary metaheuristic in which virtual ants
walk along a graph and communicate with one another by
depositing and removing pheromones from the edges of the
graph, changing the desirability of the edges [11]. It has met
with particular success in solving the TSP, and a variety of
ACO procedures have been developed for this purpose, Ant
Colony System (ACS) being the most aggressive and widely
used of these variants [12]. ACO has also been extended to
planning problems for autonomous systems, such as terrain
coverage in obstacle-free workspaces [13], [14], point-to-
point planning in obstacle-filled workspaces, [15], [16], [17],
planning in dynamic environments, [18], and simultaneous
planning and task allocation in distributed systems [19].
Despite the success of ACO in solving the TSP, planning a
tour among multiple goals in obstacle-filled environments has
not been addressed using ACO (although it is stated among
the future goals of [15]).

In this study we use ACO to plan a feasible tour among
a set of goals in an obstacle-filled environment, in which all
goal locations and obstacles are known a priori. However,
feasible goal-to-goal paths are not known a priori, and a key
challenge is for the algorithm to decide which goal-to-goal
feasible paths will be computed and considered for use in the
tour. Our application of interest is the inspection of complex
marine structures by the Bluefin-MIT Hovering Autonomous
Underwater Vehicle (HAUV), [3], [20] a problem requiring
collision-free travel to hundreds of goal locations with a
five degree-of-freedom autonomous vehicle. Consequently,
the ACO algorithm must be fast and scalable, and so a
sampling-based planning method will be used to find feasible
point-to-point paths between goals. Rather than exhaustively
computing all-pairs feasible paths among the goals, point-
to-point paths will be computed as needed. When an ant
decides to walk along a new graph edge, a bi-directional
rapidly-exploring random tree (RRT) [21] is used to find a
path. Unlike the related work of [15], we use the ant colony
metaheuristic to decide which goal to visit next, rather than
to carve out the physical paths themselves.

We compare our algorithm with two successful algorithms
previously applied to multi-goal feasible motion planning

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/10130208?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


for autonomous systems in obstacle-filled environments. In
Section II the first comparison algorithm is introduced, an
exhaustive all-pairs search for feasible paths, followed by
the use of the best-known heuristic upper bound on the
TSP [8]. In Section III the second comparison algorithm
is introduced, a fast algorithm designed to require as little
collision checking as possible by iteratively computing and
checking the minimum spanning tree (MST) [6]. Section IV
presents ACO for feasible multi-goal planning, and Section
V presents results comparing all three algorithms using a
two-dimensional robot test case.

II. EXHAUSTIVE ALL-PAIRS ALGORITHM

First, we implement an exhaustive all-pairs algorithm with
the goal of finding the shortest possible obstacle-laden TSP
that can be computed in polynomial time. The algorithm is
based on [8], in which a probabilistic roadmap (PRM) [22]
is iteratively constructed until all goals from the planning
mission are attached to a single connected component. All-
pairs shortest paths are then computed among the goals,
so each goal-to-goal cost reflects the cost of the shortest-
known feasible path from goal i to goal j among obstacles.
The goal-to-goal costs are stored in a weighted adjacency
matrix, and any TSP algorithm may be used to find a tour
among the goals. No specific TSP algorithm is adopted by
[8], but the best polynomial-time upper bound on the TSP is
achieved using Christofides’ algorithm [23]. This algorithm
provides a 3/2 upper bound on the cost of the optimal TSP
solution by adding together a MST and a minimum-cost
perfect matching that pairs up the odd-degree vertices of
the MST. The resulting structure is an Eulerian graph, on
which an Eulerian walk may be executed that visits every
edge once, and consequently, every goal at least once. This
procedure is outlined in Algorithm 1a.

An important requirement of Christofides’ 3/2 upper
bound is that the edge weights of the adjacency matrix must
satisfy the triangle inequality. This is not guaranteed to hold
if we work with feasible paths constructed using random
sampling. In the worst case, the all-pairs shortest paths
computation over the PRM will find that the shortest path
from goal i to goal j must pass through other intermediate
goals, rather than going directly from i to j. Since the goal-to-
goal costs in our adjacency matrix correspond to the shortest
existing paths, the triangle inequality will, in the worst case,
be satisifed at equality instead of being a strict inequality.

Another limitation of this method is the scalability of PRM
construction. In obstacle-filled and high-dimensional config-
uration spaces with many goals, joining all goals into a single
connected component may be very costly, and especially
challenging if we are undertaking a kinodynamic planning
task. To quantify the complexity of this algorithm and allow
comparison with the competing algorithms introduced below,
we can describe the computational cost of this method as
O(n3)+C∗O(n2). Since the competing algorithms described
below use the RRT as a goal-to-goal planner, we will capture
the cost of the PRM as the equivalent (in the worst case)
of calling an RRT across every goal-to-goal pairing in the

Algorithm 1a RobotTour = AllPairsAlg1(Goals,Obstacles)
1: Ad jMat← EuclideanDistances(Goals)
2: RoadMap← PRM(Goals,Obstacles)
3: NewAd jMat←AllPairsShortestPaths(RoadMap,Goals)
4: RobotTour←Christo f idesAlgorithm(NewAd jMat)
5: return RobotTour

Algorithm 1b RobotTour =AllPairsAlg2(Goals,Obstacles)
1: Ad jMat← EuclideanDistances(Goals)
2: RoadMap← /0
3: for Edgei j ∈ Ad jMat do
4: FeasiblePathi j← RRT (Edgei j,Obstacles)
5: RoadMap← FeasiblePathi j
6: end for
7: NewAd jMat←AllPairsShortestPaths(RoadMap,Goals)
8: RobotTour←Christo f idesAlgorithm(NewAd jMat)
9: return RobotTour

graph (this modified procedure, used for comparison only,
is outlined in Algorithm 1b). The O(n3) term describes
the complexity of Christofides’ TSP algorithm, which is
dominated by the worst-case complexity of a minimum-cost
perfect matching over n goals. It also describes the cost
of the all-pairs shortest path computation in the worst case
of a complete graph with an RRT connection between all
pairs of goals. The C ∗O(n2) term describes the cost of
building feasible paths between all pairs of goals, where C
is the representative cost of calling a goal-to-goal sampling-
based planner. C is kept outside of the parentheses to denote
its potentially high and hard-to-predict cost in a higher-
dimensional space with many obstacles. Although the all-
pairs method may not be scale-friendly, it provides a high-
quality tour in polynomial time as a basis for comparison
with other algorithms.

III. LAZY MST ALGORITHM

To achieve greater speed, a lazy algorithm can be de-
vised which solves many fewer point-to-point path queries
than an all-pairs approach. This algorithm is based on
the lazy-GMGP algorithm of [6], which approximates the
optimal TSP solution using the MST heuristic. Similar to
the Christofides heuristic, the MST heuristic yields a tour
within a factor of two of optimality by doubling the edges
of the MST and traversing every edge, visiting every goal
node in the process. This upper bound is also subject to the
satisfaction of the triangle inequality, which, unlike the all-
pairs algorithm, may be violated severely in this case.

A feasible MST cannot be computed unless all-pairs
feasible paths have been checked, so a lazy MST is computed
instead which has not been checked for collisions and is
based solely on goal-to-goal Euclidean norms. After com-
puting the lazy MST, every edge on the tree is checked for
collisions, and is replaced by a feasible path if a collision
occurs. In this study we use a bi-directional RRT as the
point-to-point planner for finding these paths. This procedure



requires the computation of n− 1 feasible paths to check
the MST, a significant reduction from the collision-checking
overhead of the all-pairs approach.

Because of the signficant savings, lazy-GMGP repeats the
MST-finding procedure, using the feasible paths of the previ-
ous iteration to find a new lazy MST and check unexplored
goal-to-goal paths until an iteration’s true feasible MST cost
falls within a designated constant factor of the lazy MST
cost. For the purposes of comparison with our ACO algo-
rithm, the iterative MST-finding and checking procedure will
terminate when the cost of the feasible MST fails to improve
over three consecutive iterations. The implementation of this
algorithm as an iterative procedure makes it likely that severe
violations of the triangle inequality (when the path from i to
j is much higher than an available path from i to k to j) will
be removed from the tree and replaced by shorter paths.

The original lazy-GMGP algorithm is designed for plan-
ning a tour among goal groups, in which only a single goal
from each group needs to be visited. In our application,
every goal is mandatory, and a regular MST can be used
in lieu of the Steiner tree solution procedure of [6]. The
computation time required by this method can be described
as N∗(O(n2)+C∗O(n)), where N is the number of iterations
in which the lazy MST is computed, the O(n2) term captures
the complexity of computing the MST over a complete graph
(since all goal-to-goal pairings are considered as candidate
edges), and the O(n) term captures the worst-case number of
RRT calls required per iteration. Once again, C represents the
cost of calling the RRT, which can be signficant in problems
of high dimension and in obstacle-filled environments. The
lazy MST algorithm is summarized in Algorithm 2.

IV. ACO ALGORITHM

Our ACO algorithm combines point-to-point planning
using a bi-directional RRT with the solution procedure for the
well-known Ant Colony System (ACS) TSP-solver. Like the
lazy MST approach, this algorithm adopts the lazy approach
of delaying collision-checking until a goal-to-goal pairing
is built into a candidate tour solution. Once this occurs,
a feasible path is found and the path’s cost replaces the
goal-to-goal Euclidean norm. In the description to follow,
all parameter values for the ACO algorithm are set to the
values recommended in [11] for use with ACS.

The algorithm is initialized with each of m ants starting at
one of the n goal nodes. Every goal-to-goal pair is initialized
with an amount of pheromone τ0 set to the reciprocal of nCnn,
where Cnn is the cost of a representative tour constructed
using the nearest neighbor heuristic. For consistency, we set
Cnn to the cost of the lazy MST. Once the pheromones are
initialized, the goal-to-goal costs are set to the values of the
Euclidean norm between goals. The desirability of a goal-
to-goal path, ηi j, is the reciprocal of the goal-to-goal cost.

During an iteration of the ACO algorithm, each ant, in
turn, takes a step from its current node i to a neighboring
node j. Each ant is forced to choose from a list of at most
five nearest neighbors; as a tour is nearing completion fewer
than five choices will be available. From among the goals in

Algorithm 2 RobotTour = LazyMSTAlg(Goals,Obstacles)
1: Ad jMat← EuclideanDistances(Goals)
2: UnclearedEdges← GetEdgePairs(Goals)
3: ClearedEdges← /0
4: while FailCount < 3 do
5: NewMSTCost← 0
6: LazyMST ←ComputeMST (Ad jMat)
7: for Edgei j ∈ LazyMST do
8: if Edgei j ∈UnclearedEdges then
9: FeasiblePathi j← RRT (Edgei j,Obstacles)

10: ClearedEdges←ClearedEdges∪Edgei j
11: UnclearedEdges←UnclearedEdges\Edgei j
12: Ad jMat(i, j)← PathCost(FeasiblePathi j)
13: end if
14: NewMSTCost← NewMSTCost +Ad jMat(i, j)
15: end for
16: if NewMSTCost < BestMSTCost then
17: BestMSTCost← NewMSTCost
18: BestMST ← LazyMST
19: FailCount← 0
20: else
21: FailCount← FailCount +1
22: end if
23: end while
24: RobotTour←ConvertToTour(BestMST )
25: return RobotTour

i’s neighborhood Nk
i , ant k chooses a destination according

to (1), where q ∈ [0,1] is a uniformly-distributed random
variable. If q is greater than the constant q0, then the outcome
J is chosen at random according to the distribution given by
(2). If a feasible path has not yet been constructed from i to
j, then a goal-to-goal path is found using the bidirectional
RRT, and the cost (and hence the desirability ηi j) from i to j
is reset to the length of this feasible path. Information about
path lengths is public and not limited to ant k.

j =

{
argmaxl∈Nk

i
{[τil ]

α [ηil ]
β} if q≤ q0

J otherwise
(1)

pi j =
[τi j]

α [ηi j]
β

∑l∈Nk
i
[τil ]α [ηil ]β

i f j ∈ Nk
i (2)

τ
new
i j = (1−ξ )τold

i j +ξ τ0 (3)

τ
new
i j = (1−ρ)τold

i j +ρ
1

Cbs (4)

When ant k moves from goal i to j, it reduces the
pheromone on the i− j pairing according to (3). The update
rule prevents the pheromone on any edge from dropping
below the initial value τ0. Once each of the m ants completes
a tour, the best tour is selected and compared with the cost
of the best-so-far tour, Cbs, replacing this value if it is lower
than Cbs. Before the next iteration begins, pheromones are
added to the the goal-to-goal pairings of the best-so-far tour
according to (4). The parameters ρ and ξ , which appear in
(3) and (4), respectively, are first-order filtering parameters



Fig. 1. A representative example of the bi-directional RRT and the PRM
used in the multi-goal planning algorithms of this study. At left, an RRT
linking the two opposite corners of the workspace, with the original path
marked in red, the post-optimized path marked in green, and unused tree
branches plotted in blue. At right, a PRM used to link 25 randomly-selected
goals, plotted in green, into a single connected component.

for tuning the pheromone update. This pheromone update
procedure, the feature which makes ACS aggressive in
comparison to other ACO solution methods, is biased toward
the best-so-far tour. Although this will drive some ants to this
tour, the removal of pheromones by ants also encourages
exploration of edges unvisited by other ants. The algorithm
is summarized in Algorithm 3.

This ACO algorithm provides us with a solution procedure
based on the nearest neighbor heuristic, in which a tour is
assembled by simply connecting goals iteratively to their
nearest neighbors until a tour is completed. There are no
upper bound guarantees on nearest neighbor tours, but ACO
provides us with a framework to iteratively improve these
solutions in cost. As is the case with the lazy MST, the
algorithm will be repeated iteratively until the best-so-far tour
cost, Cbs, fails to improve over three consecutive iterations.
In total, we can describe the computational complexity of this
method as N ∗m∗(O(n2)+C∗O(n)), where m is the number
of ants, O(n2) is the complexity of constructing a single
nearest-neighbor tour, O(n) is the worst-case number of RRT
calls required to collision check a single nearest-neighbor
tour, and N and C are the same as defined previously.

V. ALGORITHM COMPARISON

A. Simulated Test Case

A simple test environment was constructed to evaluate
the relative performance of the three multi-goal planning
algorithms. A point robot inhabits the workspace on [0,100]
in each dimension of ℜ2. This is intended to represent the
area, in units of square meters, of a typical HAUV inspection
mission underwater. Six evenly-spaced walls partition the
free space, and two openings of width 10m are randomly
placed in each wall, to allow a feasible solution of the multi-
goal planning problem. A designated number of goal states
is then sampled at random, and the robot’s mission is to find
a feasible tour among these goals. Examples of an RRT and
PRM grown in this environment are presented in Figure 1.

For several problem instances, ranging from 5 to 200 goals
in size, each of the three algorithms was run 100 times.

Algorithm 3 RobotTour = AntColonyAlg(Goals,Obstacles)
1: Ad jMat← EuclideanDistances(Goals)
2: UnclearedEdges← GetEdgePairs(Goals)
3: ClearedEdges← /0
4: while FailCount < 3 do
5: AntStates← InitializeAntsRandomly(Goals)
6: FoundImprovedTour← f alse
7: for g ∈ Goals do
8: for k ∈ AntStates do
9: Goali← AntStates(k)

10: Neighbors← FindFeasibleNeighbors(Goali)
11: Goal j←ChooseNextGoal(Goali,Neighbors)
12: if Edgei j ∈UnclearedEdges then
13: FeasiblePathi j← RRT (Edgei j,Obstacles)
14: ClearedEdges←ClearedEdges∪Edgei j
15: UnclearedEdges←UnclearedEdges\Edgei j
16: Ad jMat(i, j)← PathCost(FeasiblePathi j)
17: end if
18: ReducePheromones(Edgei j)
19: AntTours(k)← AntTours(k)∪TourEdgei j
20: TourCosts(k)← TourCosts(k)+Ad jMat(i, j)
21: AntStates(k)← Goal j
22: end for
23: end for
24: BestAnt← argmin(TourCosts(k))
25: BestTourT hisRound← AntTours(BestAnt)
26: BestCostT hisRound← TourCosts(BestAnt)
27: if BestCostT hisRound < BestCostSoFar then
28: BestCostSoFar← BestCostT hisRound
29: BestTourSoFar← BestTourT hisRound
30: FailCount← 0
31: else
32: FailCount← FailCount +1
33: end if
34: AddPheromones(BestTourSoFar)
35: Reset(AntTours,TourCosts)
36: end while
37: RobotTour← BestTourSoFar
38: return RobotTour

At the start of each run the workspace is populated with
new goals and obstacles, and all three algorithms share this
randomly generated workspace. As mentioned above, both
the lazy MST and the ACO algorithm terminate when three
consecutive iterations pass without any improvement in the
tour cost. For all instances with ten or more goals, the ACO
algorithm ran using ten ants on the graph, and for smaller
instances one ant was placed on each goal. A representative
solution of each algorithm for an instance of 25 goals is
pictured in Figure 2.

B. Results of Simulation

After running several hundred simulations on various
problem sizes, advantages and drawbacks of each algorithm
are evident. As the upper left plot of Figure 3 indicates,
the lazy MST algorithm nearly always produced a solution



Fig. 2. A representative example of the multi-goal tours returned by the
three algorithms examined in this study, for the same 25 randomly-selected
goals. At top, the exhaustive tour formulated from all-pairs feasible paths.
Components of the minimum-cost perfect matching are plotted in green,
and components of the MST are plotted in blue. At bottom, the lazy MST
tour after ten iterations, for which the cost is obtained by doubling that of
the pictured MST. At right, the ACO tour after ten iterations with ten ants.
The pictured workspaces are 100m by 100m in size.

of inferior cost, while the exhaustive all-pairs algorithm
and ACO produced solutions of nearly identical cost. ACO
produced lower-cost tours on small problem instances, but
began losing to the exhaustive all-pairs algorithm as the
problem size approached several hundred goals. It is likely
that the fixed number of ten ants, although recommended by
[11], yields an increasingly local optimization as the number
of goals grows exceedingly larger than ten.

In the upper right plot of Figure 3, the computational
cost of the stochastic algorithm components, i.e., the number
of calls to the RRT, is documented. As expressed earlier
through our use of a collision-checking cost C, collision-
checking becomes expensive in obstacle-rich environments
and is likely to outweigh the computational cost of many
deterministic algorithm components with comparable worst-
case complexity. Our worst-case analysis presented earlier
has correctly predicted the relative performance of the lazy
MST algorithm and the ACO algorithm (ACO is expected
to require more computation time due to the worst-case
multiplicative factor m, the number of ants). The all-pairs
algorithm was implemented using a PRM (hindering a mean-
ingful direct comparison with lazy MST and ACO), and so
the algorithm’s theoretical worst case performance in terms
of calls to an RRT has been plotted for comparison. It is
useful in confirming that the computational cost of the other
two algorithms is sub-quadratic.

The bottom left plot of Figure 3 indicates that the lazy
MST and the ACO algorithm were typically repeating be-
tween 3 to 10 times before terminating, with the number

Fig. 3. Results of 100 instances of each algorithm on six different problem
sizes, with randomly-generated goals. In all plots, the exhaustive all-pairs
algorithm is plotted in black, the lazy MST algorithm is plotted in red,
and the ACO algorithm is plotted in blue. The values plotted represent
the mean over 100 trials, with the error bars representing minimum and
maximum values over the 100 trials. In the upper right plot, the values
for the exhaustive all-pairs algorithm are set to their theoretical worst-case
values. In the bottom right plot, the dynamics of the lazy MST and ACO
algorithms over ten iterations are plotted for the 100-goal problem only.

of repeats increasing in the number of goals. The plot at
bottom right offers additional visualization of the stage-
to-stage dynamics of these algorithms, including the wider
variance of the lazy MST solution compared with that of the
ACO solution.

To deliver a clearer picture of which algorithm offers the
highest performance, the performance parameters of Figure
3 were quantitatively combined to rank the algorithms in the
design space of overall vehicle mission time. It was assumed
that calls to the RRT are the best representative parameter
of computation time, and that each call to the RRT requires
one second to return a solution. Hence, the x-axis of Figure 4
plots each algorithm instance according to its mean number
of calls to the RRT, costing one second per call.

Secondly, the mean tour length of each problem instance
was used to compute an estimated vehicle travel time in
seconds. Since the HAUV, at top cruising speed, can achieve
about 0.25 m/s, all tour costs were divided by this speed to
obtain an approximate travel time, which is displayed on the
y-axis of Figure 4. Added together, approximate computation
time and approximate travel time sum to total mission time,
which is a parameter associated with physically meaningful
length and velocity scales from the HAUV inspection appli-
cation. This allows us to compare all problem instances from
all three algorithms in terms of approximate total mission



Fig. 4. A plot of algorithm performance in mission time design space, in
which computation time is estimated using the mean number of RRT calls,
assuming that each call requires one second of computation, and travel time
is estimated using the mean tour cost and the maximum crusing speed of
the Bluefin-MIT HAUV, which is 0.25 m/s.

time. In producing this plot, values for the exhaustive all-
pairs algorithm were once again assumed to require RRT
calls for all-pairs feasible paths.

For every one of the six problem size instances simulated
in this study, the ACO multi-goal planning algorithm offered
superior mission time. The parameters of mission time design
space were not adjusted to favor the ACO algorithm, but
were simply chosen as physically meaningful parameters
from typical HAUV planning misssions. The ACO algorithm
clearly fills a void between the expensive, but near-optimal
exhaustive all-pairs algorithm, and the fast, but sub-optimal
lazy MST algorithm.

VI. CONCLUSION

In evaluating the performance of a new multi-goal feasible
planning algorithm that utilizes ant colony optimization,
we have made quantitative comparisons with two existing
sampling-based algorithms. The ACO algorithm, offering a
compromise between solution quality and speed, was the
superior choice given the physical parameters for HAUV
mission planning.

It is evident that there exists a design space in which
computational expense can be traded for a sacrifice in path
quality, and the ACO algorithm, using only ”off-the-shelf“
settings obtained from [11], achieved a superior balance in
this design space for the HAUV inspection application. It
is likely that with greater effort, total mission time (as a
function of computational cost plus time spent executing the
path) can not only be reduced, but minimized, by tuning an
algorithm such as ACO to suit a specific application. We
hope that exploration of this design space may lead to such
mission-time optimization in future applications.

REFERENCES

[1] K. Easton and J. Burdick, ”A Coverage Algorithm for Multi-robot
Boundary Inspection,” Proc. IEEE Int. Conf. on Robotics and Au-
tomation, Barcelona, Spain, 2005, pp. 727-734.

[2] L. Xu and T. Stentz, ”A Fast Traversal Heuristic and Optimal Algo-
rithm for Effective Environmental Coverage,” Proc. Robotics: Science
and Systems Conference, Zaragoza, Spain, 2010.

[3] B. Englot and F. Hover, ”Inspection Planning for Sensor Coverage of
3D Marine Structures”, Proc. IEEE Int. Conf. on Intelligents Robots
and Systems, Taipei, Taiwan, 2010.

[4] T. Danner and L. Kavraki, ”Randomized Planning for Short Inspection
Paths,” Proc. IEEE Int. Conf. on Robotics and Automation, San
Francisco, CA, 2000, pp. 971-976.

[5] P. Wang, R. Krishnamurti, and K. Gupta, ”View Planning Problem
with Combined View and Traveling Cost,” Proc. IEEE Int. Conf. on
Robotics and Automation, Rome, 2007, pp. 711-716.

[6] M. Saha, G. Sanchez-Ante, T. Roughgarden, and J.C. Latombe,
”Planning Tours of Robotic Arms Among Partitioned Goals,” Int. J.
Robotics Research, vol. 25(3), 2006, pp. 207-223.

[7] C. Wurll, D. Henrich, and H. Worn, ”Multi-Goal Path Planning for
Industrial Robots,” Proc. Int. Conf. on Robotics and Applications,
Santa Barbara, CA, 1999.

[8] S. Spitz and A. Requicha, ”Multiple-Goals Path Planning for Coor-
dinate Measuring Machines,” Proc. IEEE Int. Conf. on Robotics and
Automation, San Francisco, CA, 2000, pp. 2322-2327.

[9] K. Savla, F. Bullo, and E. Frazzoli, ”On Traveling Salesperson
Problems for a Double Integrator,” Proc. IEEE Conf. on Decision and
Control, San Diego, CA, pp. 5305-5310.

[10] K. Savla, F. Bullo, and E. Frazzoli, ”Traveling Salesperson Problems
for the Dubins Vehicle,” IEEE. Trans. Automatic Control, vol. 53(6),
2008, pp. 1378-1391.

[11] M. Dorigo and T. Stutzle, Ant Colony Optimization, MIT Press,
Cambridge, MA, 2004.

[12] M. Dorigo and L. Gambardella, ”Ant Colony System: A Cooperative
Learning Approach to the Traveling Salesman Problem,” IEEE. Trans.
Evolutionary Computation, vol. 1(1), 1997, pp. 53-66.

[13] S. Koenig and Y. Liu, ”Terrain Coverage with Ant Robots: A Simu-
lation Study,” Proc. Fifth Int. Conf. on Autonomous Agents, Montreal,
Canada, 2001, pp. 600-607.

[14] A. Agarwal, M. Lim, M. Er, C. Chew, ”ACO for a New TSP in Region
Coverage,” Proc. IEEE Int. Conf. on Intelligent Robots and Systems,
Edmonton, Canada, 2005, pp. 1717-1722.

[15] M. Mohamad, N. Taylor, and M. Dunnigan, ”Articulated Robot Motion
Planning Using Ant Colony Optimisation,” Proc. IEEE Int. Conf. on
Intelligent Systems, London, 2006, pp. 690-695.

[16] S. Liu, L. Mao, and J. Yu, ”Path Planning Based on Ant Colony Al-
gorithm and Distributed Local Navigation for Multi-Robot Systems,”
Proc. IEEE Int. Conf. on Mechatronics and Automation, Luoyang,
China, 2006, pp. 1733-1738.

[17] M. Garcia, O. Montiel, O. Castillo , R. Sepulveda, and P. Melin,
”Path Planning for Autonomous Mobile Robot Navigation with Ant
Colony Optimization and Fuzzy Cost Function Evalutation,” Applied
Soft Computing, vol. 9, 2009, pp. 1102-1110.

[18] T. Krenzke, Ant Colony Optimization for Agile Motion Planning,
Masters Thesis, Massachusetts Institute of Technology, 2006.

[19] A. Kulatunga, D. Liu, G. Dissanayake, and S. Siyambalapitiya, ”Ant
Colony Optimization Based Simultaneous Task Allocation and Path
Planning of Autonomous Vehicles,” Proc. IEEE Conf. on Cybernetics
and Intelligent Systems, Bangkok, 2006, pp. 1-6.

[20] F. Hover, et al., ”A Vehicle System for Autonomous Relative Survey
of In-Water Ships,” Marine Technology Society Journal, vol. 41(2),
2007, pp. 44-55.

[21] S. Lavalle and J. Kuffner, ”Rapidly-Exploring Random Trees: Progress
and Prospects,” Proc. Workshop on the Algorithmic Foundations of
Robotics, 2000, pp. 293-308.

[22] L. Kavraki, P. Svestka, J.C. Latombe, and M. Overmars, ”Probabilis-
tic Roadmaps for Path Planning in High-Dimensional Configuration
Spaces,” IEEE Trans. on Robotics and Automation, vol. 12(4), 1996,
pp. 566-580.

[23] N. Christofides, ”Worst-case Analysis of a New Heuristic for the
Traveling Salesman Problem,” Technical Report CS-93-13, Carnegie
Mellon University, 1976.


