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SUMMARY
X-chromosome inactivation (XCI) is a random, permanent, and developmentally early epigenetic event that
occurs during mammalian embryogenesis. We harness these features to investigate characteristics of early
lineage specification events during human development. We initially assess the consistency of X-inactivation
and establish a robust set of XCI-escape genes. By analyzing variance in XCI ratios across tissues and indi-
viduals, we find that XCI is shared across all tissues, suggesting that XCI is completed in the epiblast (in at
least 6–16 cells) prior to specification of the germ layers. Additionally, we exploit tissue-specific variability
to characterize the number of cells present during tissue-lineage commitment, ranging from approximately
20 cells in liver andwhole blood tissues to 80 cells in brain tissues. By investigating the variability of XCI ratios
using adult tissue, we characterize embryonic features of human XCI and lineage specification that are other-
wise difficult to ascertain experimentally.
INTRODUCTION

Every cell within femalemammalian embryos undergoes the pro-

cess of X-chromosome inactivation (XCI), which silences

expression from a single randomly chosen X-allele via epigenetic

mechanisms (Dossin and Heard, 2022; Lyon, 1961; Migeon,

2013). The random choice of which allele to inactivate occurs

early in development and is permanent thereafter with the inac-

tivated allele propagated through each cell’s developmental line-

age (Lyon, 1972). As a result, adult females exhibit mosaic

X-linked allelic expression throughout every tissue within the

body, an enduring phenotypic consequence of an early embry-

onic milestone. The random, permanent, and developmentally

early nature of XCI positions the whole-body mosaicism of

X-linked allelic expression as a lineage marker reaching back

to the earliest embryonic stages (Mclaren, 1972; Nesbitt,

1971). Careful analysis of X-linked allelic expression across indi-

viduals and tissues can thus reveal whole-body lineage relation-

ships stemming from some of the first lineage decisions made

during embryogenesis (Bittel et al., 2008; Fialkow, 1973; Mon-

teiro et al., 1998; Nesbitt, 1971).

Although the probability for inactivation is equal between the

X-alleles in humans, variation in XCI allelic ratios across individ-

uals is a salient feature of XCI. Deviation from the expected XCI

allelic ratio of 0.5 can arise through various mechanisms (Brown

and Robinson, 2000; Naumova et al., 1996; Schmidt and Du
Developmental Cell 57, 1995–2008, Au
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Sart, 1992; Wu et al., 2014) with the most basic being the

inherent stochasticity of the initial choice of allelic inactivation

(Shvetsova et al., 2019). The variability of the initial XCI ratio

within the embryo is directly linked to the number of cells present

during inactivation where smaller cell numbers result in

increased variability of XCI ratios (Nesbitt, 1971). In fact, one

can estimate the number of cells present at the time of inactiva-

tion by analyzing the variance of XCI ratios across a population.

Several studies using this approach (Amos-Landgraf et al., 2006;

Shvetsova et al., 2019), as well as studies utilizing in vitro embry-

onic models (Moreira de Mello et al., 2017; Petropoulos et al.,

2016; van den Berg et al., 2009), have estimated that XCI occurs

in a small stem cell pool within the human embryo with estimates

as little as 8 cells. The combination of the random nature and

small pool of cells present during XCI imparts an ever-present

basal-level of variability in XCI ratios within adult human

populations.

The stability of XCI down lineages means that minor cell-sam-

pling variation can be used as a marker for any process involving

selection of a set of cells, i.e., lineage specification (Fialkow,

1973; Nesbitt, 1971). Although growing evidence indicates XCI

is initiated early (Moreira de Mello et al., 2017; Petropoulos

et al., 2016; van den Berg et al., 2009), the exact timing of XCI

as it relates to early lineage specification is unclear (Geens and

Chuva De Sousa Lopes, 2017) and has important implications

for the variance in XCI ratios across early lineages. Specifically,
gust 22, 2022 ª 2022 The Authors. Published by Elsevier Inc. 1995
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Figure 1. Timing of XCI determines lineage-specific XCI ratio probability

(A) Schematic representing completed XCI before germ-layer specification. Each germ layer inherits the same randomly determined XCI ratio set prior to germ-

layer lineage specification. The probability distribution of XCI is determined by the number of cells present during inactivation.

(B) Schematic representing completed XCI after germ-layer specification. The XCI ratio for each germ layer is set independent of one another, together alongwith

variation in cell numbers fated for each germ layer results in variable XCI ratios across the germ-layer lineages.
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the extent of variability in XCI across adult tissues—those

derived from the embryonic lineage during embryogenesis—is

a long-standing question (Bittel et al., 2008; Hoon et al., 2015)

and directly linked to the timing of XCI and early lineage events.

Germ-layer specification is the first lineage decision made for all

future embryonic tissues and occurs during post-implantation

embryonic development (Ghimire et al., 2021), a similar time-

frame to XCI. If XCI is completed before germ-layer specification,

each germ layer would be specified from the same pool of cells

with a set XCI ratio (Figure 1A). The germ-layer-specific XCI ratio

would be dependent on the initial XCI ratio resulting in shared

XCI ratios across germ layers (Figure 1A) and the subsequently

derived adult tissues. In contrast, if XCI is completed after

germ-layer specification, germ-layer-specific XCI ratios are set

independently and are not expected to be shared across the

different germ layers (Figure 1B), producing variance in XCI ratios

across adult tissues. Consequently, comparing XCI ratios for tis-

sues within either the same or different germ-layer lineages can

reveal the temporal ordering of XCI and germ-layer specification.

An additional early lineage event that may overlap with XCI is

extraembryonic/embryonic lineage specification (Moreira de

Mello et al., 2017; Petropoulos et al., 2016), which precedes

germ-layer lineage specification. If XCI occurs before or during

extraembryonic/embryonic lineage specification, variance in XCI

ratios across adult tissues will be influenced by the initial stochas-

ticity of XCI and the subsequent cell selection for the embryonic

lineage. In other words, variance in XCI ratios across the germ-

layer lineages is tied to their last developmental common denom-

inator: the specification of the embryonic epiblast. Since extraem-
1996 Developmental Cell 57, 1995–2008, August 22, 2022
bryonic tissues do not contribute to adult tissues, the timing of XCI

and extraembryonic/embryonic lineage specification provides the

developmental context that variance in adult tissues is potentially

tied to the specification of the embryonic epiblast.

In this study, we develop an approach to determine the tissue

XCI ratio from unphased bulk RNA-sequencing data, allowing us

to assess XCI ratios from any publicly available RNA-sequencing

dataset. Utilizing the tissue sampling scheme of the Genotype-

Tissue Expression (GTEx v8) project (Lonsdale et al., 2013), we

analyze XCI ratios for 49 tissues both within and across individ-

uals for 311 female donors (Figure S1). We establish that XCI ra-

tios are shared for tissues both within and across germ layers

demonstrating that XCI is completed before any significant line-

age decisions are made for embryonic tissues. Additionally, we

extend population-level modeling of variance in XCI ratios to all

well-powered tissues, deriving estimates for the number of cells

present at the time of embryonic epiblast and tissue-specific

lineage commitment. By providing cell counts, temporal ordering

of lineage events, and lineage relationships across tissues,

capturing the statistical commonalities that underlie the inher-

ently stochastic nature of XCI is a powerful approach for

resolving questions of early developmental lineage specification.

RESULTS

The folded-normal model accurately estimates XCI
ratios from unphased data
A practical consequence of bulk RNA-sequencing is that the XCI

ratio of a tissue can be estimated from the direction and
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magnitude of X-linked allele-specific expression. For a tissue

with 75% of cells carrying an active maternal X-allele, approxi-

mately 75% of RNA-sequencing reads for heterozygous loci

are expected to align to thematernal X-allele (Figure 2A). Howev-

er, allelic expression for any given gene is affected by a variety of

factors both biological (e.g., eQTLs) and technical (e.g., read

sampling). To derive robust estimates, we aggregate allelic

expression ratios across well-powered intra-genic heterozygous

SNPs for a given tissue, providing a chromosome-wide estimate

of the tissue XCI ratio (Figure 2A).

When aligned to a reference genome, reference alleles will be

composed of both maternal and paternal alleles for a given sam-

ple. It follows that reference allelic expression ratios represent

the expected expression ratios from both the maternal and

paternal alleles, given the XCI ratio of the tissue (Figure 2A). To

account for this, folding the reference allelic expression ratios

about 0.5 aggregates the imbalanced allelic expression within

the tissue across the two alleles. This enables the magnitude

of the XCI ratio to be estimated from unphased expression

data by fitting a folded distribution (Gart, 1970; Urbakh, 1967)

(see STAR Methods; Figures 2A and 2B).

To assess the accuracy of the folded-normal model in esti-

mating XCI ratios, we test our approach with phased bulk

RNA-sequencing data from the EN-TEx (Rozowsky et al., 2021)

consortium, a total of 49 tissue samples from 2 female donors

spanning 26 different tissues. Comparing the unphased esti-

mates derived with the folded-normal model to the phased me-

dian allelic expression per sample, we find nearly perfect XCI ra-

tio estimate correspondence for ratios greater than 0.6

(Figure 2C). For samples skewed closer to the folding point of

0.5, model misspecification of the underlying distribution makes

the estimate overconservative.

Our approach for estimating XCI ratios aggregates allelic

expression across numerous heterozygous loci, averaging

awaymechanisms outside of XCI that may impact X-linked allelic

expression. A widespread mechanism that may still impact our

XCI ratio estimates is escape from inactivation, where a gene

is biallelically expressed from the active and inactive X-alleles

(Tukiainen et al., 2017). Between 15% and 30% of genes on

the X-chromosome have documented evidence for escape

(Carrel and Willard, 2005; Tukiainen et al., 2017). Although we

exclude known escape genes (Tukiainen et al., 2017) from our

folded-normal XCI ratio estimates, it is very likely that unanno-

tated escape genes are present within the data. To identify the

impact of escape on our XCI ratio estimates, we compare

folded-normal XCI ratio estimates derived with either excluding

or including known escape genes to the phased XCI ratio of tis-

sues excluding the known escape genes (Figure 2D). Including

known escape genes biases the folded-normal XCI ratio esti-

mates toward 0.5 (Figure 2D). By comparing allelic ratios of

known escape genes to all other genes in EN-TEx tissues with

XCI ratios R0.7, we clearly see escape genes trend toward

balanced biallelic expression, contributing to the underesti-

mated XCI ratios when including escape genes (Figure 2E).

To assess variance in XCI and escape more broadly, we capi-

talize on the tissue sampling structure of the Genotype-Tissue

Expression (GTEx v8) dataset (Figure S1). From an average of

56 ± 23.5 (SD) well-powered heterozygous SNPs (genes, see

STARMethods) per sample (Figure S1), we derive robust XCI ra-
tio estimates for 4,658 GTEx tissue samples spanning 49

different tissues (Figure S1).

In addition to biological sources of variation (escape), read

depth is a critical source of technical variation to assess when

analyzing allelic expression. Sampled allelic expression is the

result of a binomial sampling event dependent on the number

of reads sampled and the probability of allelic expression.

Although we employ stringent read count requirements (see

STAR Methods), we additionally explore how robust our tissue-

level XCI ratio estimates are in the face of global decreases in

read depths across genes (Figure 2F). As read depths per

gene are decreased (10%, 20%, 30%, etc.), the vast majority

of increased error in the XCI ratio estimates is constrained to

the estimates below 0.6 (Figure 2F), whereas the most skewed

tissue samples (XCI ratio estimates above 0.9) display nearly

zero additional error even up to an 80% reduction in read depth

(Figure 2F). These results are in line with our phased versus un-

phased comparisons demonstrating that XCI ratio estimates

above 0.6 (Figure 2C) are highly accurate. Additionally, these re-

sults appear to be independent of the number of genes used to

estimate the tissue XCI ratio (Figure S1), where we use a mini-

mum of 10 genes per sample. This suggests that aggregating

allelic expression over even a modest number of genes is pow-

ered to accurately estimate tissue XCI ratios above 0.6 from

bulk RNA-sequencing data.

Escape genes exhibit consistent cross-tissue biallelic
expression
Our method to quantitatively determine the tissue XCI ratio via

aggregating signal across genes is especially well-suited to

explore escape from XCI within the GTEx dataset (Figure 2E).

Our basic strategy for detecting escape genes is to calculate

each gene’s consistency with the aggregate chromosomal inac-

tivation ratio. Assessing all X-linked genes utilized in our GTEx

XCI ratio estimates (Figure 3A) and previously annotated consti-

tutively escape genes (Tukiainen et al., 2017) results in a wide

range of correlations between gene and tissue XCI ratios, exem-

plified by the genes SHROOM4 and TCEAL3 (Figure 3B). As ex-

pected, the transcripts associated with XCI, namely, XIST and

TSIX, show some of the highest correlations to the tissue XCI ra-

tio (i.e., top 8.7%; Figure 3B). Similarly, known escape genes

exhibit some of the smallest correlations (Figure 3B). Interest-

ingly, several genes previously annotated as escape do exhibit

rather strong correlations to the XCI ratio of tissues. We find

that increased gene expression is linked to increased correlation

to the tissue XCI ratio (Figure 3C) suggesting that some gene

variation with respect to the tissue XCI ratio is technical, reflect-

ing read sampling at low expression. At matched expression

levels, previously annotated escape genes have smaller tissue-

gene XCI ratio correlations compared to all other genes (Fig-

ure 3C), demonstrating that known escape genes are less corre-

lated to the tissue XCI ratio as expected by expression

levels alone.

From our analysis in the EN-TEx dataset, escape from inacti-

vation trends toward balanced biallelic expression rather than

achieving completely equal allelic expression (Figure 2E), ex-

plaining how some escape genes retain significant correlations

to tissue XCI ratios in the GTEx dataset. To comprehensively

test the degree to which escape produces balanced allelic
Developmental Cell 57, 1995–2008, August 22, 2022 1997
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Figure 2. The folded-normal model accurately estimates XCI ratios from unphased bulk RNA-sequencing data

(A) Schematic demonstrating how allelic expression of heterozygous SNPs reflect the XCI ratio of bulk tissue samples. Aligning expression data to a reference

genome scrambles the parental haplotypes. Folding the reference allelic expression ratios captures the magnitude of the tissue XCI ratio.

(B) Distributions of reference allelic expression ratios for identified heterozygous SNPs across tissue samples exhibiting a range of bulk XCI ratios. Both the

unfolded (top row) and folded distributions with the fitted folded-normal model (bottom row) are shown.

(C) For the EN-TEx tissue samples, the phased median gene XCI ratio is plotted against the unphased XCI ratio estimate from the folded-normal model. The

folded-normal model produces near identical XCI ratio estimates for samples with XCI ratios greater than or equal to 0.60.

(D) Deviation of the folded-normal model from the phased median gene XCI ratio when excluding or including known escape genes.

(E) Aggregated folded reference allelic expression distributions for known escape and inactive genes in EN-TEx tissues with XCI ratios R 0.70.

(F) Root mean squared error distributions for GTEx tissue samples binned by their original estimated XCI ratio as read depth per SNP are gradually reduced.

See also Figure S1.

ll
OPEN ACCESS Article

1998 Developmental Cell 57, 1995–2008, August 22, 2022



A B

C

E F

D

Figure 3. Genes that escape XCI exhibit balanced biallelic expression across XCI-skewed tissues

(A) The genomic location and number of GTEx samples each gene is detected for the 542 genes that pass our quality control filters.

(B) All 542 genes and 45 known escape genes ranked by the Pearson correlation coefficient for each gene’s allelic expression and the XCI ratio of the tissue for

samples that detect that gene.

(C) Distributions of gene-tissue XCI ratio correlations for all 542 genes and 45 escape genes, binned by average expression. The range of average expression is

binned into 4 equally spaced bins.We label the top 50%of ‘‘all other genes’’ in each expression bin as ‘‘inactive genes’’ and the bottom 50%as ‘‘unknown’’ genes,

as they are potentially a mix of inactive and unannotated escape genes.

(D) An example for how the empirical p values are calculated for a given test gene across tissue samples. For a given tissue sample, we calculate each gene’s

allelic expression ratio deviation from 0.5, where the black histogram represents the deviations from the inactive genes in the sample and the blue-dotted line

represents the deviation of the given test gene in the sample, ARHGAP4 in this example. We apply Fisher’s method to aggregate each test gene’s distribution of

empirical p values to calculate a meta-analytic p value to determine significance (ARHGAP4 meta-analytic p value: 4.44e�21, SLC6A8 meta-analytic p

value: 0.997).

(legend continued on next page)
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expression, we construct a one-sided test to detect whether a

gene consistently trends toward balanced biallelic expression

regardless of the XCI ratio of the tissue (see STAR Methods; Fig-

ure S2). Against a null distribution of inactivated genes, we are

able to identify genes with consistent biallelic expression in op-

position to the aggregate imbalanced tissue XCI ratio, indicating

escape from XCI (Figure 3D).

Testing the known escape genes using this approach results in

significant escape signal (Figure 3E). Similarly,we are able to iden-

tify 19 genes previously unannotated for constitutive escape to

have significant escape signal (p value < 0.001): ARHGAP4,

BTK, CASK, CHRDL1, CLIC2, COX7B, CTPS2, CXorf36, F8,

ITM2A, MECP2, MPP1, NLGN4X, PGK1, RPL36A, SASH3,

SEPT6, STARD8, and VSIG4 (Figures 3E and S2). Revisiting these

geneswithin the literature, several have prior evidence for escape,

although typically limited in the tissues assessed: BTK (Hagen

et al., 2020; Zito et al., 2021), CASK (Zito et al., 2021), CHRDL1

(Zito et al., 2021), CLIC2 (Tukiainen et al., 2017; Zito et al.,

2021), COX7B (Larsson et al., 2019), CTPS2 (Balaton et al.,

2021), CXorf36 (Winham et al., 2019), MPP1 (Zito et al., 2021),

NLGN4X (Tukiainen et al., 2017; Zito et al., 2021), SASH3 (Zito

et al., 2021), SEPT6 (Zhang et al., 2013), and VSIG4 (Berletch

et al., 2015). Our results suggest these genes escape inactivation

more broadly than previously reported. In addition, our analysis

provides supporting evidence of escape for 34 previously anno-

tated escape genes and supporting evidence of inactivation for

143 genes (Table S1). Although in this analysis, we are powered

to identify more constitutively escape genes, variability in escape

across tissues and individuals is well documented. As such, our

escape annotations are robust to the GTEx data we sample

over and will benefit greatly from future experimental follow-up.

To test the impact of including escape genes on our GTEx tis-

sue XCI ratio estimates, we compare our original tissue XCI ratio

estimates to estimates calculated while including the known

escape genes (Figure 3F). The inclusion of escape genes results

in slightly underestimated XCI ratios (Figure 3F), although the

impact is minimal with an average absolute deviation of 0.0088

(±0.010 SD) between XCI ratio estimates including/excluding

the known escape genes. This demonstrates our folded aggre-

gation of allelic expression across genes to estimate XCI ratios

is robust to noise generated by escape from inactivation.

XCI is completed prior to germ-layer specification
Having developed a robust approach to measure XCI ratios

from unphased data, we turn to assessing the degree that

XCI ratios are shared across tissues within individuals. As an

initial visualization of XCI ratios across tissues, we order all fe-

male GTEx donors by their average XCI ratio and plot the ratio

for all tissues grouped by germ layer (Figure 4A). XCI ratios

qualitatively appear consistent across all tissues and the three

germ layers (Figure 4A). We then ask how well do individual tis-

sues predict all other tissues’ XCI ratios, which we quantify with
(E) The aggregated empirical p value distributions for inactive, known escape, and

plotted. The unknown genes are classified as either confident inactive or novel e

(F) The percent of genes previously annotated for escape per sample is plotted a

either including or excluding the previously annotated escape genes. The inset p

(x axis) or including the known escape genes (y axis).

See also Figure S2 and Table S1.
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the AUROC (area under receiver operating characteristic curve)

metric (Figure S3). For a given tissue, we take the average XCI

ratio of all other tissues for each donor and use this average to

classify the donors as low/high XCI ratio donors. If the given tis-

sue’s XCI ratio can recapitulate the same low/high classifica-

tions of the donors, this indicates that tissue’s XCI ratio is in

concordance with the average of all other tissues and would

result in an AUROC close to 1. Across various thresholds for

defining low/high donors, we see that performance is high

and consistent across all tissues, suggesting that XCI ratios

are generally shared across all tissues for an individual

(Figure S3).

Stratifying tissue comparisons of XCI ratios by germ-layer line-

age relationships should resolve the temporal ordering of XCI

and germ-layer specification within the human embryo. If XCI

occurs before germ-layer specification, tissue XCI ratios are

expected to positively covary across tissues from different

germ-layer lineages (Figure 1A). In contrast, if XCI occurs after

germ-layer specification, the XCI ratio of each germ layer is set

independently, and there is little expected covariance in XCI ra-

tios for tissues from different germ layers (Figure 1B). We

compute correlations of the XCI ratio for combinations of tissues

derived from either the same or different germ layers, exempli-

fied in Figure 4B. Tissues sharing the same germ-layer lineage

produce strictly positive significant correlation values ranging

from 0.25 to 0.90 (Figure 4C), demonstrating XCI ratios are

shared within individual germ-layer lineages. Strikingly, signifi-

cant positive ratio correlations for tissues derived from different

germ layers are on the same order as the within germ-layer com-

parisons, ranging from 0.24 to 0.87 (Figures 4C and S3). The fact

tissues derived from different germ layers covary for their XCI ra-

tio strongly suggests XCI is completed prior to germ-layer spec-

ification and the initial embryonic XCI ratio is propagated through

all germ-layer lineages.

Although we annotate individual tissues to belong to a single

primary germ layer, tissues are compositions of cell types

derived from different germ layers. This may impact the

observed variance in XCI ratios across tissues if there is a strong

germ-layer-specific effect in XCI ratio variance. We take advan-

tage of the recently released single-nucleus RNA-sequencing

(Eraslan et al., 2022) GTEx data to deconvolve (Newman et al.,

2019) several of the bulk tissues into their germ-layer compo-

nents, allowing us to explore variance in XCI ratios across

germ layers within single tissues. Figure 4D provides examples

of the deconvolved germ-layer proportions of three tissues

with the remaining 6 tissues provided in Figure S4, demon-

strating that there is variation in germ-layer composition within

tissues. We extract germ-layer-specific markers for the lung,

skin, and esophagus mucosa tissues (Table S2; see STAR

Methods) to explore variance in XCI ratios across germ layers

within single tissues. The XCI ratios of germ-layer-specific

markers positively covary in each tissue (Figures 4E–4G,
the unknown genes now classified as confident inactive and novel escape are

scape by using a significance threshold of meta-analytic p value < 0.001.

gainst the difference between the sample’s XCI ratio estimates derived when

lot compares the XCI ratio estimates derived without the known escape genes
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Figure 4. XCI ratios are shared across germ-layer lineages

(A) Heatmap of all estimated XCI ratios for the tissues of each donor, with donors ordered by their mean XCI ratio across tissues and tissues grouped by germ-

layer lineage. Black indicates no tissue donation for that donor-tissue pair.

(B) Examples of within and across germ-layer lineage comparisons of XCI ratios. Each data point represents the estimated XCI ratios of the two indicated tissues

for a single donor.

(C) All significant (FDR-corrected p value % 0.05, permutation test n = 10,000) Pearson correlation coefficients for within and across germ-layer lineage com-

parisons.

(D) Stacked bar plots for the germ-layer percentage composition for each sample in the lung, esophagus mucosa, and skin lower leg GTEx tissues. The de-

convolved cell type percentages and their germ-layer annotations are provided in Figure S4.

(E–G) The folded allelic expression ratios for germ-layer markers and all other genes (not markers) are plotted for several example donors per tissue, E, lung; F,

skin lower leg; and G, esophagusmucosa. The adjacent scatter plots compare themedian folded allelic expression between germ-layer markers for all donors. E:

lung mesodermal and endodermal markers, Pearson correlation of 0.626 (p value < 0.001), F: skin lower leg mesodermal and ectodermal markers, Pearson

correlation of 0.621 (p value < 0.001), G: esophagus mucosa endodermal and ectodermal markers, Pearson correlation 0.603 (p value < 0.001), mesodermal and

ectodermal markers, Pearson correlation 0.360, (p value < 0.001), and mesodermal and endodermal markers, Pearson correlation 0.537 (p value < 0.001).

See also Figures S3 and S4 and Table S2.
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Pearson correlations: lung mesoderm and endoderm 0.626, skin

mesoderm and ectoderm 0.621, esophagus endoderm and

ectoderm 0.603, esophagus mesoderm and ectoderm 0.360,

and esophagus mesoderm and endoderm 0.537), recapitulating

the result of shared XCI ratios across germ layers that we

demonstrate with the non-deconvolved tissues.

Specific tissue lineages have increased probability for
switching the parental direction of XCI
In addition to demonstrating that XCI ratios are broadly shared

across all tissues, our cross-tissue analysis reveals that there

is a degree of variability in XCI ratios across tissues within indi-

viduals. Comparing distributions of gene-level allelic expression

across tissues for individual donors reveals that there are often

individual tissues that exhibit divergence in XCI ratios in opposi-

tion to the general trend of shared XCI ratios (Figures 5A and 5B).

This is evidenced by the divergent distributions of gene-level

allelic expression for the whole blood, vagina, and skin tissues

in donor 11P81 (Figure 5A) and the esophagus mucosa, vagina,

and skin tissues in donor 1J1OQ (Figure 5B). The presence of in-

dividual tissues exhibiting divergent XCI ratios within an individ-

ual suggests that there may be lineage-specific effects contrib-

uting to variance in XCI ratios across tissues.

To further investigate the degree of variation in XCI ratios

across tissues, we take advantage of the cross-tissue sam-

pling of individual donors to determine the parental direction

of XCI. If an expressed heterozygous SNP is captured for

two different tissues of an individual, the reference allele is

on the same haplotype and maintains directional allelic infor-

mation. Thus, calculating the correlation of reference SNP

allelic ratios for shared SNPs between two tissues can reveal

whether those tissues share the same XCI direction

(Figures 5C and 5D; see STAR Methods). When examining a

donor with generally high XCI ratios across all tissues (Fig-

ure 5C; Donor 11P81), we find that all tissues share the

same parental direction in allelic inactivation. Whereas a less

skewed donor (Figure 5D; Donor 1J1OQ, ovary and vagina

tissues) exhibits a subset of tissues with opposite parental

inactivation compared with the majority of tissues for that

donor. Across all donors, as the average XCI ratio of their tis-

sues increases, the proportion of their tissues exhibiting

switched parental XCI decreases (Figure 5E), with the most

skewed donors exhibiting zero tissues with switched parental

XCI (Figure 5E). Interestingly, switching parental direction of

XCI is in fact concentrated in a subset of tissues, with 12

of 49 tissues being significantly enriched for instances of

switched XCI (Figure 5F, Fisher’s exact test, p value %

0.05). The existence of individual tissues with increased prob-

ability for switching parental directions of XCI is indicative of

increased variance in XCI ratios for those particular tissue lin-

eages. We explore this model further in cell population esti-

mates at the time of tissue-specific lineage commitment

section.

Cell population estimate at the time of embryonic
epiblast lineage specification
The fact XCI ratios are broadly shared across tissues suggests

the initial embryonic XCI ratio determined at the time of inactiva-

tion is propagated through development. This is strongly evi-
2002 Developmental Cell 57, 1995–2008, August 22, 2022
denced by the consistency of XCI ratios across the developmen-

tally distant germ-layer lineages (Figures 4, 5A, and 5B).

Population-level variance in adult XCI ratios thus, in part, reflects

the sample distribution during XCI, which depends on the num-

ber of cells present during inactivation. We derive estimates for

the number of cells present at the time of inactivation by

modeling XCI ratio variance from tissue-specific ratio distribu-

tions across donors (Figures 6A). Using a maximum likelihood

approach, we fit estimated models to the tails of the empirical

XCI ratio distributions to account for the uncertain unfolded

XCI ratio estimates between 0.4 and 0.6 (Figure 6A; see STAR

Methods). The cell number estimates derived from all well-pow-

ered tissues range from 6 to 16 cells (Figure 6B), i.e., approxi-

mately within a single-cell division, demonstrating a striking de-

gree of similarity in population-level XCI ratio variance across the

assessed tissues. We model variance in XCI ratios as a random

binomial sampling event that is then propagated through devel-

opment. The consistency in XCI ratios across developmentally

distant tissues supports this model, although there are likely

additional contributors to the observed variance in XCI ratios,

such as genetic variation that might drive allelic selection (Brown

and Robinson, 2000; Schmidt and Du Sart, 1992) as well as sto-

chastic deviations during development (Sun et al., 2021). In the

simplest case, observed variance in XCI ratios is derived from

the initial stochasticity of XCI, positing our cell number estimates

as lower bounds for the number of cells that must be involved

in XCI.

Notably, we sample variance in XCI of tissues derived from the

embryonic lineage. If XCI occurs before extraembryonic/embry-

onic lineage specification, the variance we observe in adult tis-

sues is a combination of the initial variance at the time of XCI

and additional sampling variance linked to the lineage specifica-

tion of the embryonic epiblast. This contextualizes our 6–16 cell

number estimate as a potential lower bound for the number of

cells present during embryonic epiblast lineage specification in

the human embryo.

Cell population estimates at the time of tissue-specific
lineage commitment
Tissue-specific lineage commitment can be modeled as a

random sampling event from a pool of unspecified progenitor

cells. In the context of XCI, the XCI ratio of the newly specified

tissue is dependent on the prior XCI ratio of the progenitor

pool and the number of cells fated for that tissue and can be

modeled as a binomial sampling event (Figure 6C). As such,

the GTEx dataset offers a unique opportunity to capture this tis-

sue-specific XCI variance and model the lower bound for the

number of cells present at the time of tissue-specific lineage

commitment across a broad range of human tissues.

To capture the tissue-specific variance in XCI as it relates to

the prior embryonic XCI ratio, we model the deviation of tis-

sue-specific XCI ratios from the average donor XCI ratios for all

donors of a given tissue (see STAR Methods; Figure 6D, 46

well-powered tissues). Our model follows the logic that tissues

with large variation in their deviation from average donor XCI ra-

tios are derived from a smaller pool of cells, a consequence of

increased variability due to small-sample-size effects. On the

low end of the estimated cell numbers, we have liver, whole

blood, and adrenal tissues with �20 estimated cells compared
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Figure 5. Individual tissue lineages exhibit increased variance in XCI ratios

(A) Folded allele-specific expression distributions for individual tissues from the 11P81 donor with the aggregated germ-layer distributions in the top.

(B) Folded allele-specific expression distributions for individual tissues from the 1J1OQ donor with the aggregated germ-layer distributions in the top.

(C) Pearson correlation distributions calculated from all pairwise comparisons of shared heterozygous SNPs between two tissues for all of donor 11P81’s tissues.

Positive correlations indicate the same parental direction of XCI; negative correlations indicate opposite parental directions of XCI.

(D) Similar to (C), displaying results for donor 1J1OQ’s tissues.

(E) Box plots of the per donor proportion of tissues that switched parental XCI directions with donors binned by their mean XCI ratio across tissues.

(F) Bar plot indicating the proportion of donors where the specified tissue switched directions compared to other tissues. Asterisks indicate significance from

Fisher’s exact test (FDR-corrected p value % 0.05), identifying tissues enriched for switching XCI directions.
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Figure 6. XCI and tissue-lineage specification can be timed to a pool of cells by exploiting observed variability

(A) Example tissue demonstrating the model for estimating cell numbers at the time of XCI using the population-level variance in XCI ratios. We fit normal dis-

tributions, as a continuous approximation of the underlying binomial distribution of XCI ratios, to the tails of tissue-specific XCI ratio distributions (shaded in blue),

which accounts for the uncertain 0.40–0.60 unfolded XCI ratio estimates (shaded in gray).

(B) The resulting estimated cell numbers present during XCI derived from the XCI ratio variance of all tissues with at least 10 donors. Error bars are 95% con-

fidence intervals, and tissues are grouped by germ-layer lineage.

(C) Schematic for our model of tissue-lineage specification and the implications for tissue-specific XCI ratios. The XCI ratio of a tissue is dependent on the prior

XCI ratio of the embryo and the number of cells selected for that tissue lineage. These two features define the binomial distribution for that tissue’s XCI ratio.

(D) Estimated number of cells selected for individual tissue-lineage specification of 46 different tissues. Error bars represent 95%confidence intervals. The top bar

graph plots the variance in the distribution of tissue XCI ratio deviation from the average XCI ratio of each donor for that tissue. The inset plot compares the

estimated number of cells present at the time of tissue specification with the proportion of that tissue’s samples that switched parental XCI directions, Pearson

correlation �0.663 (p value < 0.001).
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with the brain tissues that occupy most of the higher estimated

cell numbers, ranging from �40–140 estimated cells. In line

with our model that tissues derived from smaller stem cell pools

are subject to increased variability in XCI ratios, we find a strong

negative relationship between our estimated tissue-lineage-spe-

cific cell numbers and the probability of a tissue switching

the direction of parental XCI (Figure 6D, inset, Pearson

correlation: �0.663, p value < 0.001). A tissue derived from a

small number of cells is more likely to result in a sample of oppo-

sitely skewed cells compared with the parental XCI ratio of the

unspecified progenitor pool simply through increased sampling

variance. Our estimated lineage-specific cell numbers and line-

age-specific probability for switching parental XCI are internally

consistent with a model of lineage-specific variance in XCI ratios

being driven by cell-sampling variation at the time of lineage

specification.

DISCUSSION

In this work, we exploited the random, permanent, and develop-

mentally early nature of XCI to investigate characteristics of early

lineage specification events during human development. By

analyzing variance in XCI ratios across tissues and individuals,

we showed human XCI is completed before tissue specification

and the stochastically determined XCI ratio set during embryo-

genesis is a shared feature across all tissue lineages. We esti-

mate a lower bound of 6–16 cells are fated for the embryonic

epiblast lineage based on population-level variance in XCI ratios.

Additionally, we provide lower bound estimates of the number of

cells present during tissue-specific lineage specification for 46

different tissues. To conduct this analysis, we developed a

method to estimate the ratio of XCI using unphased allele-spe-

cific expression, a highly scalable approach applicable to any

bulk RNA-sequencing sample.

This work provides insight into the observed variance of XCI

ratios in normal female populations, an area of ongoing debate

(Brown and Robinson, 2000; Clerc and Avner, 2006; Migeon,

1998; Peeters et al., 2016). Our results indicate that the initial em-

bryonic XCI ratio is propagated through development and is a

shared feature across all tissue lineages. This demonstrates

the stochasticity of the initial choice for inactivation within the

embryo has a measurable impact on XCI ratios in adult females.

Importantly, GTEx donors presumably represent a phenotypi-

cally normal population; as such, our analysis captures XCI vari-

ance in the absence of potential drivers (X-linked diseases) of

allelic selection, representing the null distribution of XCI variation

in adult females.

Additional contributors to the observed variance in XCI ratios

across tissues may be genetic variation that can drive allelic se-

lection over development (Brown and Robinson, 2000; Schmidt

and Du Sart, 1992) or stochastic deviations in XCI ratios caused

by developmental proliferation (Sun et al., 2021). In contrast to

these models, we report strikingly consistent XCI ratios across

tissues for individual donors and, importantly, across tissues

derived from different germ layers. If allelic selection or sto-

chastic deviations from proliferation were strong contributors

to variance in XCI, we would not expect consistent XCI ratios

across developmentally distant adult tissues. Nevertheless, it

is unlikely that the initial embryonic XCI ratio is propagated
through development with perfect fidelity, which contextualizes

our cell number estimates as lower bound estimates for the

number of cells that must have been involved in XCI or lineage

specification events. In general, our results suggest that XCI ra-

tios are broadly shared across tissues with lineage-specific

stochasticity due to cell-sampling effects during lineage

specification.

For the timing of XCI, there is a wealth of complimentary

research on the exact molecular mechanisms (Dossin and

Heard, 2022; Vallot et al., 2017) that define the highly complex

biological process of XCI. XCI is a continuous molecular process

and recent studies from human embryos suggest the timing of

XCI may overlap the lineage specification of the extraembryonic

and embryonic tissues (Moreira de Mello et al., 2017; Petropou-

los et al., 2016), which precedes germ-layer specification. In this

study, we aimed to interrogate the timing of XCI as it relates to

germ-layer specification within the embryonic lineage. Any over-

lap in timing for the molecular process of XCI and extraembry-

onic/embryonic lineage specification will have no impact on

our results and conclusions of shared variance in XCI within

the embryonic lineage. The consideration of extraembryonic tis-

sues provides the developmental context that XCI ratio variance

within the germ-layer lineages may be a combination of XCI sto-

chasticity and cell sampling during embryonic epiblast

specification.

One alternative model consistent with our results is the poten-

tial for rapid allelic changes in the time between XCI and germ-

layer specification, allowing for selection or drift to occur, with

the XCI ratio then stabilized after germ-layer specification.

Although possible, we find this improbable due to the small num-

ber of cell divisions estimated to occur between XCI and germ-

layer specification, as well as the lack of evidence for any

continued effects after germ layer specification.

Our work is part of a broader history of using X-linked mosai-

cism as a useful tool for studying lineage relationships, with

studies ranging from investigations of early lineage events in

mice (Nesbitt, 1971) to ascertaining tumor clonality (Linder and

Gartler, 1965). Typically, these approaches will capitalize on a

single locus of the X-chromosome to determine XCI status (Bou-

dewijns et al., 2007). One of our methodological contributions is

demonstrating the allelic expression imbalance generated via

XCI can be aggregated across multiple loci to provide near-per-

fect estimates of XCI ratios, even in the absence of phased

information.

Although GTEx represents the premier dataset for human

cross-tissue functional genomics, more data are always helpful.

As our approach for estimating XCI ratios is applicable to any

bulk RNA-sequencing data, we envision this work providing an

informative control for any future functional genomic investiga-

tions involving the X-chromosome.

Limitations of the study
Although the GTEx dataset aims to sample non-diseased tis-

sues, we cannot rule out potential disease-states, genetic or

otherwise, for all tissue samples, where disease may impact

allelic selection and contribute to variance inn XCI ratios.

When assessing escape from XCI, we focus on genes with

constitutive rather than facultative signal and cannot make

conclusions on likely tissue- or donor-specific escape. Our
Developmental Cell 57, 1995–2008, August 22, 2022 2005
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tissue-specific cell-count estimations depend on the sample

size of the given tissue and the number of tissues sampled for

individual donors, both of which vary considerably across tis-

sues and individuals. As such, these estimates are likely rough

approximations that can be improved with additional tissue and

donor sampling.
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et al. (2013).
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METHOD DETAILS

GTEx and EN-TEx data
Fastq files for all female donors from the GTEx project v7 release (Lonsdale et al., 2013) were obtained from dbGaP accession num-

ber phs000424.vN.pN. BAM files for additional female samples from the v8 release were obtained from the associated AnVIL repos-

itory (gtexportal.org/home/protectedDataAcccess). All GTEx v7 data files can also be accessed in the GTEx v8 AnVIL repository.

Phased expression data from the EN-TEx project (Rozowsky et al., 2021) were obtained in collaboration with the ENCODE con-

sortium. EN-TEx data is available on the online portal. Expression data and annotations for the GTEx single nucleus RNA-sequencing

data were obtained from the GTEx data portal.

RNA-seq alignment and SNP identification
For aligning RNA-sequencing data, the GRCh38.p7 human reference genome using GENCODE v.25 (Frankish et al., 2021)

annotations was generated with STAR v2.4.2a (Dobin et al., 2013) and data was aligned with STAR v2.4.2a or STAR

v2.5.2b. STAR was run using default parameters with per sample 2-pass mapping. BAM files for the additional GTEx v8 samples

(originally aligned to GRCh38.p10 with GENCODE v.26 annotations) were sorted using samtools v1.9 (Li et al., 2009) and con-

verted to fastq files using bedtools v.2.26.0 (Quinlan and Hall, 2010). For each sample, alignment to the X-chromosome was

extracted using samtools and passed to GATK (McKenna et al., 2010) for SNP identification. Using GATK v.4.1.3.0 and

following the best practices workflow for RNAseq short variant discovery (GATK best practices), we utilized the following pipe-

line of GATK tools using default parameters unless otherwise stated: AddorReplaceReadGroups -> MarkDuplicates ->

SplitNCigarReads -> HaplotypeCaller (-stand-call-conf 0.0) -> SelectVariants (-select-type SNP) -> VariantFiltration. The

following filters were used in VariantFiltration to set flags for downstream filtering: QD < 2.0, QUAL < 30.0, SOR > 3.0,

FS > 60.0, MQ < 40.0, MQRankSum < -12.5, and ReadPosRankSum < -8.0. These filters were determined from GATK recom-

mendations and empirical evaluation of the identified SNPs’ metrics.

SNP quality control
SNPs identified through GATK were further filtered on various metrics to increase confidence in SNPs identified from RNA-

sequencing data and ensure well-powered SNPs for allele-specific expression analysis. The resulting .vcf files from GATK were

filtered to only contain SNPs present within dbSNP (Sherry et al., 2001). The remaining SNPs were filtered to be heterozygous

with 2 identified alleles and at least 10 reads mapped to each allele for a minimum threshold of 20 reads per SNP. Additionally,

SNPs were required to pass the SOR, FS, and ReadPosRankSum filters set in the GATK pipeline. Only SNPs located within

annotated genes (excluding the PAR regions of the X-chromosome) were considered and in the case of multiple identified

SNPs in the same gene for a sample, the SNP with the highest total read count was taken as the max-powered representative

for that gene. SNPs with a total read count above 3000 were excluded as they demonstrated a uniform distribution of allelic

expression.

Gene filtering (reference bias and XCI escape)
From the observation of a heavy tail towards allelic expression in the reference direction across all called SNPs in the GTEx dataset,

we compiled gene specific distributions of allelic expression to determine if a select few genes/SNPs were at fault. The majority of

genes demonstrated distributions of relative allelic expression centered around 0.5 with several considerable exceptions, some

genes exhibited bimodal or extremely biased distributions. We excluded genes that failed the dip test for unimodality as well as

the top and bottom 5% of genes ranked by the deviation of their mean reference expression ratio from 0.5. Additionally, we excluded

genes previously annotated to constitutively escape XCI (Tukiainen et al., 2017). In total, we end upwith well-powered SNPs from 542

genes along the X-chromosome for modeling XCI ratios.

Folded normal model for estimating XCI ratios
We aggregate the allelic expression imbalance of the X-chromosome over both alleles by folding the reference allelic expression ra-

tios about 0.5 (Figures 2A and 2B). To obtain our XCI ratio estimates we fit a folded normal distribution to the folded reference allelic

expression ratios of each sample, using the maximum log likelihood estimate as the estimated XCI ratio. Theoretically, the captured

bulk allelic expression for a heterozygous X-linked SNP follows a binomial distribution characterized by the read depth of the SNP and

the XCI ratio of the sample. Without phasing information, the allelic expression of heterozygous X-linked SNPs can be characterized

by the folded-binomial model (Gart, 1970; Urbakh, 1967). Since SNPs vary in read depth and various biological factors (e.g. eQTLs)

are not accounted for in the binomial model, we take the folded normal model as a continuous approximation. We require samples to

have XCI ratio estimates derived from at least 10 filtered SNPs for downstream analysis, resulting in 4659 samples with a mean of 56

well-powered SNPs per sample (Figure S1). Additionally, we calculate 95% confidence intervals (CI) for each XCI ratio estimate via a

nonparametric bootstrap percentile approach (n = 200), excluding XCI ratio estimates with a CI width >=.15 from downstream anal-

ysis. For donors with multiple samples for the same tissue, we average the XCI ratio estimates together, duplicated tissue samples

have minor differences in estimated XCI ratios (mean difference in XCI ratios for duplicate tissue samples: 0.018 +- 0.023 SD).
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Modeling read sampling error when estimating XCI ratios
The sampled allelic reads for any expressed heterozygous loci will follow a binomial distribution defined by the total number of

reads sampled (n) and the probability for allelic expression (p). For a given GTEx sample, we define SNP-specific binomial distri-

butions as Binomial(n = total number of reads, p = sampled reference allelic expression ratio). For each individual GTEx tissue sam-

ple, we randomly sample a single instance from each SNP-specific binomial distribution to simulate SNP expression ratios with

noise from allelic read sampling. We estimate the XCI ratio using the folded normal model on the simulated SNP expression ratios

and repeat the simulation 50 times to generate a distribution of estimated tissue XCI ratios. We compute the root mean squared

error of the simulated tissue XCI ratios about the original estimated tissue XCI ratio. We repeat the entire analysis with a percent

reduction in each SNP’s total read count (10%, 20%, 30%, etc.) to model variance in our estimated XCI ratios as read depth

decreases.

Gene-tissue XCI ratio correlations
To test individual gene’s propensity to follow the aggregate chromosomal XCI ratio, we calculate Pearson correlations between a

gene’s reference allelic expression ratio and the estimated XCI ratio leaving out that gene for all samples the gene is detected.

We calculate these correlations for each of the 542 filtered genes described above and for 45 previously annotated constitutively

escape genes detected in our dataset. We only consider genes detected in at least 30 samples and with an FDR corrected (Benja-

mini-Hochberg) correlation p-value <=.05 determined by a permutation test (n = 10000) for further investigation of escape status,

resulting in 380 putative inactive genes and the 45 previously annotated escape genes.

Testing for escape from XCI
To detect escape genes, it is necessary to compare against genes that undergo complete inactivation and do not escape. After strat-

ifying by mean expression, we reason the genes most likely to undergo complete inactivation are genes with high gene-tissue XCI

ratio correlations within each expression bin (Figure 3C). Accordingly, we take the top 50% of putative inactive genes within each

bin to define the null distribution of allelic expression under the hypothesis of complete inactivation (191 genes). The remaining

189 putative inactive genes and the 45 known escape genes comprise our test set. We reason a gene that escapes XCI will be biased

for balanced biallelic expression regardless of the XCI ratio of the tissue. Using only tissues with an estimated XCI ratio >= 0.70, we

compute the deviation from 0.5 (balanced allelic expression) for all inactive genes and the test gene.We rank the gene deviations and

calculate the empirical p-value as the rank of the test gene divided by the total number of ranks i.e. the number of null inactive genes +

1 (Figure S2).We only consider empirical p-values derived from samples with at least 20 null inactive genes detected. Additionally, we

only consider test genes with at least 50 empirical p-values. For each remaining test gene, we aggregate the distribution of empirical

p-values using Fisher’s method and apply an FDR correction (Benjamini-Hochberg) to the resulting meta-analytic p-values. We use a

threshold of meta-analytic p-value <.001 to call significance for escape. For Fisher’s method, under the null hypothesis, the log sum

of all p-values follows a chi-squared distribution with 2k degrees of freedom, where k is the number of independent tests being com-

bined. We use R’s pchisq function to compute the meta-analytic p-value for the following test statistic:

X2
2k � � 2

Xk

i = 1

logðpiÞ:

Tissue XCI ratio predicting donor XCI ratio
For the donors that contribute to a given tissue, we calculate the mean XCI ratio across all other tissues for each donor and use that

mean as an approximation for the true XCI ratio for each donor. We classify donors as low/high XCI ratio donors if they have a mean

XCI ratio greater than or equal to various thresholds (0.65, 0.7, 0.75). We calculate the AUROC of a given tissue’s XCI ratio predicting

the low/high donors via the Mann-Whitney U test statistic where

AUCtissue =
U

nhigh donorsnlow donors

:

Cross-tissue XCI ratio correlations
For all pairwise combinations of the 49 tissues present within the GTEx dataset, we take the subset of donors that contribute both

tissues for a given comparison and calculate the Pearson correlation for the folded XCI ratio of the tissues. Figures 4C1–4C2

depicts only the correlation values derived with a sample size of at least 20 donors and an FDR corrected (Benjamini-Hochberg)

p-value <=.05 derived from a permutation test (n = 10000). Figure S3 depicts all computed correlations regardless of sample size

or p-value.

CIBERSORTx deconvolution and germ layer-specific marker identification
CIBERSORTx (https://cibersortx.stanford.edu (Newman et al., 2019)) was run using the recommended settings following the ‘‘Build a

signature matrix file from single-cell RNA sequencing data’’ and ‘‘Impute cell fractions’’ tutorials, batch correction was enabled when

imputing cell fractions. Briefly, the annotated single-cell RNA sequencing data from GTEx is used to build a signature matrix that
Developmental Cell 57, 1995–2008.e1–e5, August 22, 2022 e3
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identifies genes that define the annotated cell types. This signature matrix is used to impute the cell type composition of bulk RNA

sequencing samples. We extract germ layer-specific marker genes from the signature matrices identified from CIBERSORTx, clas-

sifying a gene as a germ layer marker if it is a gene that identifies cell types exclusively from a single germ layer. Our annotated germ

layer markers, the cell types they define, and the tissue they are derived from are available in Table S2. The signature matrices and

imputed cell types per tissue with associated statistics from CIBERSORTx are made available on the FTP site http://labshare.cshl.

edu/shares/gillislab/people/werner/werner_et_al_Dev_Cell_2022 /data.

Inference on direction of XCI ratios
To infer the direction of XCI ratios from unphased data, we look at allelic expression of heterozygous SNPs captured in multiple tis-

sues for an individual donor. The reference allele of a heterozygous SNP captured in two different tissues of a single donor represents

the same parental X-allele in both tissues. If the direction of XCI is the same for both tissues, the heterozygous SNP is expected to

exhibit the same degree of reference allelic expression across the two tissues (positive correlation). If the direction of XCI is different,

reference allelic expression will be inverted for one of the tissues resulting in a negative correlation. For each donor, for all pairwise

combinations of their donated tissues with XCI ratios >= 0.6, we calculate Pearson correlations for unfolded reference allelic expres-

sion ratios using only SNPs detected in both tissues (Figure 5). We only use SNPs that are within the previously filtered 542 genes

described above and only consider correlations derived from tissue comparisons with at least 30 shared SNPs. Using positive or

negative correlations as a readout for switched XCI direction between tissues, we perform Fisher’s exact test with a Benjamini-Hoch-

berg correction to identify any tissue significantly enriched for switching XCI directions. We use the hypergeometric distribution to

calculate raw p-values for Fisher’s Exact Test. For a given tissue, we input the number of times that tissue switched XCI directions

minus 1, the total number of switched XCI cases across all tissues, the total number of non-switched XCI cases across all tissues, and

the sample size for the given tissue.

Evaluating XCI cell number estimates
XCI is a binomial sampling event defined by the number of cells present during inactivation and the equal probability of inactivation

between the alleles Binomial(N = # of cells, p = 0.5). As such, the variance in XCI ratios within a population is directly linked to the

number of cells present during XCI. We derive estimates for the number of cells present during XCI by fitting a normal model to tis-

sue-specific XCI skew distributions as a smoothened estimate for the underlying binomial distribution. We take the theoretical vari-

ance from the binomial model as the variance for the normal approximation.

varXCI = var
�
BinomialðN;p;qÞ

N

�
= pq

N = :5ð1� :5Þ
Nembryo

, where p,q = probability of allelic inactivation.

For a range of cell numbers (N = 2:50), we select the normal model with minimum error between its CDF and the empirical XCI ratio

CDF of a given tissue for the tails of the distribution (XCI ratio <= 0.4 and XCI ratio >= 0.6). This accounts for the uncertain folded 0.5 –

0.6 XCI ratios estimates in the unfolded space. We calculate 95% CIs for each estimated cell number via a nonparametric bootstrap

percentile approach (n = 2000). We only consider cell number estimates from tissues with at least 10 donors.

Evaluating tissue-specific lineage cell number estimates
We model tissue-specific lineage specification as a cell sampling event from a large pool of cells. As such, the XCI ratio of a

tissue will follow a binomial model defined by the number of cells fated for that tissue and the XCI ratio of the embryo

(Figure 6C).

XCItissue � BinomialðN;p;qÞ
N

=
Binomial

�
Ntissue; XCIembryo; 1 � XCIembryo

�
Ntissue
varXCItissue = var

�
BinomialðN;p;qÞ

N

�
=

pq

N
=

XCIembryo

�
1 � XCIembryo

�
Ntissue
SDXCItissue =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XCIembryo

�
1 � XCIembryo

�
Ntissue

s

For a given tissue, across donors with variable XCI ratios ðXCIembryoÞ the variation in the tissue XCI ratio is defined by the constant

Ntissue, the number of cells fated for that tissue. To estimate this constant, we calculate z-scores for each tissue-donor pair of a given

tissue using the mean XCI ratio of all other tissues for each donor as an approximation for the XCIembryo.

Ztissue =
XCItissue � XCIembryo

SDtissue

=
XCItissue � XCIembryoffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XCIembryo

�
1 � XCIembryo

�q ffiffiffiffiffiffiffiffiffiffiffiffi
Ntissue

p
= ttissue

ffiffiffiffiffiffiffiffiffiffiffiffi
Ntissue

p

As the standard deviation of a distribution of z-scores is 1, we solve for Ntissue:
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SDðZÞ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m� 1

Pm
i = 1

ðZi � ZÞ2
s

= 1, where m = number of donors for a given tissue

Ntissue =
m � 1Pm

i = 1ðti � tÞ2

We calculate 95%CIs for eachNtissue via a nonparametric bootstrap percentile approach (n = 2000) using the ttissue distribution.We

require a tissue to have at least 10 donors in order to calculate Ntissue.

Data analysis and visualization
All analysis was conducted in R version 4.0.5 (R Core Team, 2021). Graphs were generated using the ggplot2 (Wickham, 2016),

ComplexHeatmap (Gu et al., 2016), karyoploteR (Gel and Serra, 2017), and base R packages.

QUANTIFICATION AND STATISTICAL ANALYSIS

When correcting p-values, we use the Benjamini-Hochberg procedure implemented by R’s p.adjust function with ‘‘method = BH’’

parameter. Significance is determined with p-value <= 0.05 unless otherwise stated. We use the R dip.test function from the diptest

package to perform Hartigan’s dip test of unimodality. For Fisher’s method of aggregating p-values, we use the R function pchisq

with ‘lower.tail = FALSE’ parameter to compute themeta-analytic p-value from the calculated chi-square test statistic. All confidence

intervals are computed using a nonparametric bootstrap percentile approach, where the underlying data is sampled with replace-

ment to generate a bootstrapped distribution of the variable in question (tissue XCI ratio estimates, cell number estimates). The

95% confidence interval is defined by the 2.5th and 97.5th percentile of the bootstrapped distribution. We determine if tissues are

enriched for switching parental XCI directions using the hypergeometric implementation of Fisher’s Exact Test, using R’s phyper

function. When fitting normal distributions to tissue XCI ratio distributions, we use the R quantile function with parameter ‘‘type =

1’’ to compute the empirical CDF and the R qnorm function to compute the theoretical normal CDF. For any given correlation calcu-

lated, we permute the underlying data to get a null distribution of correlations under the hypothesis of independence, using R’s cor

function with ‘‘method = pearson’’ parameter. We derive a raw p-value for the original correlation value from the empirical null dis-

tribution of correlations (permutation test). In the analyses where we generate many correlations, we apply a Benjamini-Hochberg

FDR correction to the associated distribution of raw p-values to call significance, using a threshold of p-value <= 0.05.
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