32 research outputs found

    Ammonia‐oxidizing archaea and nitrite‐oxidizing nitrospiras in the biofilter of a shrimp recirculating aquaculture system

    Full text link
    This study analysed the nitrifier community in the biofilter of a zero discharge, recirculating aquaculture system ( RAS ) for the production of marine shrimp in a low density (low ammonium production) system. The ammonia‐oxidizing populations were examined by targeting 16 S rRNA and amoA genes of ammonia‐oxidizing bacteria ( AOB ) and archaea ( AOA ). The nitrite‐oxidizing bacteria ( NOB ) were investigated by targeting the 16 S rRNA gene. Archaeal amoA genes were more abundant in all compartments of the RAS than bacterial amoA genes. Analysis of bacterial and archaeal amoA gene sequences revealed that most ammonia oxidizers were related to N itrosomonas marina and N itrosopumilus maritimus . The NOB detected were related to N itrospira marina and N itrospira moscoviensis, and Nitrospira  marina ‐type NOB were more abundant than N . moscoviensis ‐type NOB . Water quality and biofilm attachment media played a role in the competitiveness of AOA over AOB and Nitrospira  marina‐ over N . moscoviensis‐ type NOB .Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95109/1/fem1448.pd

    Arabidopsis Gene Family Profiler (aGFP) – user-oriented transcriptomic database with easy-to-use graphic interface

    Get PDF
    Background: Microarray technologies now belong to the standard functional genomics toolbox and have undergone massive development leading to increased genome coverage, accuracy and reliability. The number of experiments exploiting microarray technology has markedly increased in recent years. In parallel with the rapid accumulation of transcriptomic data, on-line analysis tools are being introduced to simplify their use. Global statistical data analysis methods contribute to the development of overall concepts about gene expression patterns and to query and compose working hypotheses. More recently, these applications are being supplemented with more specialized products offering visualization and specific data mining tools. We present a curated gene family-oriented gene expression database, Arabidopsis Gene Family Profiler (aGFP; http://agfp.ueb.cas.cz webcite), which gives the user access to a large collection of normalised Affymetrix ATH1 microarray datasets. The database currently contains NASC Array and AtGenExpress transcriptomic datasets for various tissues at different developmental stages of wild type plants gathered from nearly 350 gene chips. Results: The Arabidopsis GFP database has been designed as an easy-to-use tool for users needing an easily accessible resource for expression data of single genes, pre-defined gene families or custom gene sets, with the further possibility of keyword search. Arabidopsis Gene Family Profiler presents a user-friendly web interface using both graphic and text output. Data are stored at the MySQL server and individual queries are created in PHP script. The most distinguishable features of Arabidopsis Gene Family Profiler database are: 1) the presentation of normalized datasets (Affymetrix MAS algorithm and calculation of model-based gene-expression values based on the Perfect Match-only model); 2) the choice between two different normalization algorithms (Affymetrix MAS4 or MAS5 algorithms); 3) an intuitive interface; 4) an interactive "virtual plant" visualizing the spatial and developmental expression profiles of both gene families and individual genes. Conclusion: Arabidopsis GFP gives users the possibility to analyze current Arabidopsis developmental transcriptomic data starting with simple global queries that can be expanded and further refined to visualize comparative and highly selective gene expression profiles

    Organic Carbon Amendments for Enhanced Biological Attenuation of Trace Organic Contaminants in Biochar-Amended Stormwater Biofilters

    Get PDF
    This study sought to evaluate how dissolved organic carbon (DOC) affects attenuation of trace organic contaminants (TOrCs) in biochar-amended stormwater biofilters. It was hypothesized that (1) DOC-augmented runoff would demonstrate enhanced TOrC biodegradation and (2) biochar-amended sand bearing DOC-cultivated biofilms would achieve enhanced TOrC attenuation due to sorptive retention and biodegradation. Microcosm and column experiments were conducted utilizing actual runoff, DOC from straw and compost, and a suite of TOrCs. Biodegradation of TOrCs in runoff was more enhanced by compost DOC than straw DOC (particularly for atrazine, prometon, benzotriazole, and fipronil). 16S rRNA gene quantification and sequencing revealed that growth-induced microbial community changes were, among replicates, most consistent for compost-augmented microcosms and least consistent for raw runoff microcosms. Compost DOC most robustly enhanced utilization of TOrCs as carbon substrates, possibly due to higher residual nutrient levels upon TOrC exposure. Sand columns containing just 0.5 wt % biochar maintained sorptive TOrC retention in the presence of compost-DOC-cultivated biofilms, and TOrC removal was further enhanced by biological activity. Overall, these results suggest that coamendment with biochar and compost may robustly enhance TOrC attenuation in stormwater biofilters, a finding of significance for efforts to mitigate the impacts of runoff on water quality
    corecore