15 research outputs found
The End of the Marxist-Legal-Theories in Japan (3)
With current techniques, it remains a challenge to assess coregulator binding of nuclear receptors, for example, the estrogen receptor alpha (ERa). ERα is critical in many breast tumors and is inhibited by antiestrogens such as tamoxifen in cancer therapy. ERα is also modified by acetylation and phosphorylation that affect responses to the antiestrogens as well as interactions with coregulators. Phosphorylation of ERα at Ser305 is one of the mechanisms causing tamoxifen resistance. Detection of resistance in patient samples would greatly facilitate clinical decisions on treatment, in which such patient
Joint action on mental health at workplaces: SWOT-analyses in the Netherlands
The aim of this project & work package is to develop a European action plan on mental health at work. A major and essential ingredient for this is the involvement of the relevant stakeholders and sharing experiences among them on the national and member state level. The Dutch Ministries of Health and Social Affairs and Employment have decided to participate in this “joint action on the promotion of mental health and well-being” with a specific focus on the work package directed at establishing a framework for action to promote taking action on mental health and well-being at workplaces at national level as well
Steroid hormonal bioactivities, culprit natural and synthetic hormones and other emerging contaminants in waste water measured using bioassays and UPLC-tQ-MS
Emission of compounds with biological activities from waste water treatment plant (WWTP) effluents into surface waters is a topic of concern for ecology and drinking water quality. We investigated the occurrence of hormone-like activities in waste water sample extracts from four Dutch WWTPs and pursued to identify compounds responsible for them. To this aim, in vitro reporter gene bioassays for androgenic, anti-androgenic, estrogenic, glucocorticoid and progestogenic activity and a UPLC-tQ-MS target analysis method for 25 steroid hormones used in high volumes in pharmacy were applied. Principal component analysis of the data was performed to further characterize the detected activities and compounds. All five types of activities tested were observed in the WWTP samples. Androgenic and estrogenic activities were almost completely removed during WW treatment, anti-androgenic activity was only found in treated WW. Glucocorticoid and progestogenic activities persisted throughout the treatment. The androgenic activity in both influent could predominantly be attributed to the presence of androstenedione and testosterone. Anti-androgenic activity was explained by the presence of cyproterone acetate. The glucocorticoid activity in influent was fully explained by prednicarbate, triamcinolone acetonide, dexamethasone and amcinonide. In effluent however, detected hormones could only explain 10–32% of the activity, indicating the presence of unknown glucocorticoids or their metabolites in effluent. Progesterone and levonorgestrel could explain the observed progestogenic activity. The principle component analysis confirmed the way in which hormones fit in the spectrum of other emerging contaminants concerning occurrence and fate in WWTPs
Characterisation of (anti-)progestogenic and (anti-)androgenic activities in surface and wastewater using high resolution effectdirected analysis
The quality of surface waters is threatened by pollution with low concentrations of bioactive chemicals, among which those interfering with steroid hormone systems. Induced by reports of anti-progestogenic activity in surface waters, a two-year four-weekly survey of (anti-)progestogenic activity was performed at three surface water locations in the Netherlands that serve as abstraction points for the production of drinking water. As certain endogenous and synthetic progestogenic compounds are also potent (anti-)androgens, these activities were also investigated. Anti-progestogenic and anti-androgenic activities were detected in the majority of the monitoring samples, sometimes in concentrations exceeding effect-based trigger values, indicating the need for further research. To characterize the compounds responsible for the activities, a high resolution Effect-Directed Analysis (hr-EDA) panel was combined with PR and AR CALUX bioassays, performed in agonistic and antagonistic modes. The influent and effluent of a domestic wastewater treatment plant (WWTP) were included as effluent is a possible emission source of active compounds. As drivers for androgenic and progestogenic activities several native and synthetic steroid hormones were identified in the WWTP samples, namely androstenedione, testosterone, DHT, levonorgestrel and cyproterone acetate. The pesticides metolachlor and cyazofamid were identified as contributors to both the anti-progestogenic and anti-androgenic activities in surface water. In addition, epiconazole contributed to the anti-progestogenic activities in the rivers Rhine and Enclosed Meuse. This study showed the strength of hr-EDA for the identification of bioactive compounds in environmental samples and shed light on the drivers of (anti-)progestogenic and (anti-)androgenic activities in the aquatic environment
Identification of mutagenic and endocrine disrupting compounds in surface water and wastewater treatment plant effluents using high-resolution effect-directed analysis
Effect-directed analysis (EDA) has shown its added value for the detection and identification of compounds with varying toxicological properties in water quality research. However, for routine toxicity assessment of multiple toxicological endpoints, current EDA is considered labor intensive and time consuming. To achieve faster EDA and identification, a high-throughput (HT) EDA platform, coupling a downscaled luminescent Ames and cell-based reporter gene assays with a high-resolution fraction collector and UPLC-QTOF MS, was developed. The applicability of the HT-EDA platform in the analysis of aquatic samples was demonstrated by analysis of extracts from WWTP influent, effluent and surface water. Downscaled assays allowed detection of mutagenicity and androgen, estrogen and glucocorticoid agonism following high-resolution fractionation in 228 fractions. From 8 masses tentatively identified through non-target analysis, 2 masses were further investigated and chemically and biologically confirmed as the mutagen 1,2,3-benzotriazole and the androgen androstenedione. The compatibility of the high-throughput EDA platform with analysis of water samples and the incorporation of mutagenic and endocrine disruption endpoints allow for future application in routine monitoring in drinking water quality control and improved identification of (emerging) mutagens and endocrine disruptors
Cofactor profiling of the glucocorticoid receptor from a cellular environment
The Microarray Assay for Realtime Coregulator-Nuclear receptor Interaction (MARCoNI) technology allows the identification of nuclear receptor-coregulator interactions via flow-through microarrays. As such, differences in the coregulator profile between distinct nuclear receptors or of a single receptor in agonist or antagonist mode can be investigated, even in a single run. In this chapter, the method how to perform these peptide microarrays with cell lysates containing the overexpressed glucocorticoid receptor is described, as well as the influence of assay parameters, variations to the protocol and data analysis
Compound Identification Using Liquid Chromatography and High-Resolution Noncontact Fraction Collection with a Solenoid Valve
We describe the development of a high-resolution, noncontact fraction collector for liquid chromatography (LC) separations, allowing high-resolution fractionation in high-density well plates. The device is based on a low-dead-volume solenoid valve operated at 1–30 Hz for accurate collection of fractions of equal volume. The solenoid valve was implemented in a modified autosampler resulting in the so-called FractioMate fractionator. The influence of the solenoid supply voltage on solvent release was determined and the effect of the frequency, flow rate, and mobile phase composition was studied. For this purpose, droplet release was visually assessed for a wide range of frequencies and flow rates, followed by quantitative evaluation of a selection of promising settings for highly accurate, repeatable, and stable fraction collection. The potential of the new fraction collector for LC-based bioactivity screening was demonstrated by fractionating the LC eluent of a mixture of estrogenic and androgenic compounds, and a surface water sample (blank and spiked with bioactives) combining mass spectrometric detection and two reporter gene assays for bioactivity detection of the fractions. Additionally, a mixture of two compounds was repeatedly LC separated and fractionated to assess the feasibility of the system for analyte isolation followed by nuclear magnetic resonance analysis
Identification and characterization of two consistent osteoarthritis subtypes by transcriptome and clinical data integration
OBJECTIVE: To identify OA subtypes based on cartilage transcriptomic data in cartilage tissue and characterize their underlying pathophysiological processes and/or clinically relevant characteristics. METHODS: This study includes n = 66 primary OA patients (41 knees and 25 hips), who underwent a joint replacement surgery, from which macroscopically unaffected (preserved, n = 56) and lesioned (n = 45) OA articular cartilage were collected [Research Arthritis and Articular Cartilage (RAAK) study]. Unsupervised hierarchical clustering analysis on preserved cartilage transcriptome followed by clinical data integration was performed. Protein-protein interaction (PPI) followed by pathway enrichment analysis were done for genes significant differentially expressed between subgroups with interactions in the PPI network. RESULTS: Analysis of preserved samples (n = 56) resulted in two OA subtypes with n = 41 (cluster A) and n = 15 (cluster B) patients. The transcriptomic profile of cluster B cartilage, relative to cluster A (DE-AB genes) showed among others a pronounced upregulation of multiple genes involved in chemokine pathways. Nevertheless, upon investigating the OA pathophysiology in cluster B patients as reflected by differentially expressed genes between preserved and lesioned OA cartilage (DE-OA-B genes), the chemokine genes were significantly downregulated with OA pathophysiology. Upon integrating radiographic OA data, we showed that the OA phenotype among cluster B patients, relative to cluster A, may be characterized by higher joint space narrowing (JSN) scores and low osteophyte (OP) scores. CONCLUSION: Based on whole-transcriptome profiling, we identified two robust OA subtypes characterized by unique OA, pathophysiological processes in cartilage as well as a clinical phenotype. We advocate that further characterization, confirmation and clinical data integration is a prerequisite to allow for development of treatments towards personalized care with concurrently more effective treatment response