3,264 research outputs found

    An agglomeration-based massively parallel non-overlapping additive Schwarz preconditioner for high-order discontinuous Galerkin methods on polytopic grids

    Full text link
    In this article we design and analyze a class of two-level non-overlapping additive Schwarz preconditioners for the solution of the linear system of equations stemming from discontinuous Galerkin discretizations of second-order elliptic partial differential equations on polytopic meshes. The preconditioner is based on a coarse space and a non-overlapping partition of the computational domain where local solvers are applied in parallel. In particular, the coarse space can potentially be chosen to be non-embedded with respect to the finer space; indeed it can be obtained from the fine grid by employing agglomeration and edge coarsening techniques. We investigate the dependence of the condition number of the preconditioned system with respect to the diffusion coefficient and the discretization parameters, i.e., the mesh size and the polynomial degree of the fine and coarse spaces. Numerical examples are presented which confirm the theoretical bounds

    Computer Algebra meets Finite Elements: an Efficient Implementation for Maxwell's Equations

    Full text link
    We consider the numerical discretization of the time-domain Maxwell's equations with an energy-conserving discontinuous Galerkin finite element formulation. This particular formulation allows for higher order approximations of the electric and magnetic field. Special emphasis is placed on an efficient implementation which is achieved by taking advantage of recurrence properties and the tensor-product structure of the chosen shape functions. These recurrences have been derived symbolically with computer algebra methods reminiscent of the holonomic systems approach.Comment: 16 pages, 1 figure, 1 table; Springer Wien, ISBN 978-3-7091-0793-

    EGRET Observations of the Diffuse Gamma-Ray Emission in Orion: Analysis Through Cycle 6

    Get PDF
    We present a study of the high-energy diffuse emission observed toward Orion by the Energetic Gamma-Ray Experiment Telescope (EGRET) on the Compton Gamma-Ray Observatory. The total exposure by EGRET in this region has increased by more than a factor of two since a previous study. A simple model for the diffuse emission adequately fits the data; no significant point sources are detected in the region studied (l=195∘l = 195^\circ to 220∘220^\circ and b=−25∘to−10∘b = -25^\circ to -10^\circ) in either the composite dataset or in two separate groups of EGRET viewing periods considered. The gamma-ray emissivity in Orion is found to be (1.65±0.11)×10−26ssr−1(1.65 \pm 0.11) \times 10^{-26} {s sr}^{-1} for E > 100 MeV, and the differential emissivity is well-described as a combination of contributions from cosmic-ray electrons and protons with approximately the local density. The molecular mass calibrating ratio is N(H2)/WCO=(1.35±0.15)×1020cm−2(Kkm/s)−1N(H_2)/W_{CO} = (1.35 \pm 0.15) \times 10^{20} cm^{-2} (K km/s)^{-1}.Comment: 16 pages, including 5 figures. 3 Tables as three separate files. Latex document, needs AASTEX style files. Accepted for publication in Ap

    Connexin-Mediated Signaling in Nonsensory Cells Is Crucial for the Development of Sensory Inner Hair Cells in the Mouse Cochlea

    Get PDF
    Mutations in the genes encoding for gap junction proteins connexin 26 (Cx26) and connexin 30 (Cx30) have been linked to syndromic and nonsyndromic hearing loss in mice and humans. The release of ATP from connexin hemichannels in cochlear nonsensory cells has been proposed to be the main trigger for action potential activity in immature sensory inner hair cells (IHCs), which is crucial for the refinement of the developing auditory circuitry. Using connexin knock-out mice, we show that IHCs fire spontaneous action potentials even in the absence of ATP-dependent intercellular Ca(2+) signaling in the nonsensory cells. However, this signaling from nonsensory cells was able to increase the intrinsic IHC firing frequency. We also found that connexin expression is key to IHC functional maturation. In Cx26 conditional knock-out mice (Cx26(Sox10-Cre)), the maturation of IHCs, which normally occurs at approximately postnatal day 12, was partially prevented. Although Cx30 has been shown not to be required for hearing in young adult mice, IHCs from Cx30 knock-out mice exhibited a comprehensive brake in their development, such that their basolateral membrane currents and synaptic machinery retain a prehearing phenotype. We propose that IHC functional differentiation into mature sensory receptors is initiated in the prehearing cochlea provided that the expression of either connexin reaches a threshold level. As such, connexins regulate one of the most crucial functional refinements in the mammalian cochlea, the disruption of which contributes to the deafness phenotype observed in mice and DFNB1 patients. SIGNIFICANCE STATEMENT: The correct development and function of the mammalian cochlea relies not only on the sensory hair cells, but also on the surrounding nonsensory cells. Although the nonsensory cells have been largely implicated in the general homeostasis in the mature cochlea, their involvement in the initial functional differentiation of the sensory inner hair cells is less clear. Using mutant mouse models for the most common form of congenital deafness in humans, which are knock-outs for the gap-junction channels connexin 26 and connexin 30 genes, we show that defects in nonsensory cells prevented the functional maturation of inner hair cells. In connexin knock-outs, inner hair cells remained stuck at a prehearing stage of development and, as such, are unable to process sound information

    Goal-oriented a posteriori error estimation for the travel time functional in porous media flows

    Get PDF
    In this article we consider the a posteriori error estimation and adaptive mesh refinement for the numerical approximation of the travel time functional arising in porous media flows. The key application of this work is in the safety assessment of radioactive waste facilities; in this setting, the travel time functional measures the time taken for a non-sorbing radioactive solute, transported by groundwater, to travel from a potential site deep underground to the biosphere. To ensure the computability of the travel time functional, we employ a mixed formulation of Darcy's law and conservation of mass, together with Raviart-Thomas H(div) conforming finite elements. The proposed a posteriori error bound is derived based on a variant of the standard Dual-Weighted-Residual approximation, which takes into account the lack of smoothness of the underlying functional of interest. The proposed adaptive refinement strategy is tested on both a simple academic test case and a problem based on the geological units found at the Sellafield site in the UK

    Conformational change of the catalytic subunit of glucose-6-phosphatase in rat liver during the fetal-to-neonatal transition

    Get PDF
    The glucose-6-phosphatase system was investigated in fetal rat liver microsomal vesicles. Several observations indicate that the orientation of the catalytic subunit is different in the fetal liver in comparison with the adult form: (i) the phosphohydrolase activity was not latent using glucose- 6-phosphate as substrate, and in the case of other phosphoesters it was less latent; (ii) the intravesicular accumulation of glucose upon glucose-6- phosphate hydrolysis was lower; (iii) the size of the intravesicular glucose- 6-phosphate pool was independent of the glucose-6-phosphatase activities; (iv) antibody against the loop containing the proposed catalytic site of the enzyme inhibited the phosphohydrolase activity in fetal but not in adult rat liver microsomes. Glucose-6-phosphate, phosphate, and glucose uptake could be detected by both light scattering and/or rapid filtration method in fetal liver microsomes; however, the intravesicular glucose-6-phosphate and glucose accessible spaces were proportionally smaller than in adult rat liver microsomes. These data demonstrate that the components of the glucose-6- phosphatase system are already present, although to a lower extent, in fetal liver, but they are functionally uncoupled by the extravesicular orientation of the catalytic subunit

    Signature of effective mass in crackling noise asymmetry

    Full text link
    Crackling noise is a common feature in many dynamic systems [1-9], the most familiar instance of which is the sound made by a sheet of paper when crumpled into a ball. Although seemingly random, this noise contains fundamental information about the properties of the system in which it occurs. One potential source of such information lies in the asymmetric shape of noise pulses emitted by a diverse range of noisy systems [8-12], but the cause of this asymmetry has lacked explanation [1]. Here we show that the leftward asymmetry observed in the Barkhausen effect [2] - the noise generated by the jerky motion of domain walls as they interact with impurities in a soft magnet - is a direct consequence of a magnetic domain wall's negative effective mass. As well as providing a means of determining domain wall effective mass from a magnet's Barkhausen noise our work suggests an inertial explanation for the origin of avalanche asymmetries in crackling noise phenomena more generally.Comment: 13 pages, 4 figures, to appear in Nature Physic

    Geographical variation in the high-duty cycle echolocation of the cryptic common mustached bat Pteronotus cf. rubiginosus (Mormoopidae)

    Get PDF
    The use of bioacoustics as a tool for bat research is rapidly increasing worldwide. There is substantial evidence that environmental factors such as weather conditions or habitat structure can affect echolocation call structure in bats and thus compromise proper species identification. However, intraspecific differences in echolocation due to geographical variation are poorly understood, which poses a number of issues in terms of method standardization. We examined acoustic data for Pteronotus cf. rubiginosus from the Central Amazon and the Guiana Shield. We provide the first evidence of intraspecific geographic variation in bat echolocation in the Neotropics, with calls significantly differing in almost all standard acoustic parameters for the two lineages of this clade. We complement our bioacoustic data with molecular and morphological data for both species. Considerable overlap in trait values prevents reliable discrimination between the two sympatric Pteronotus based on morphological characters. On the other hand, significant divergence in the frequency of maximum energy suggests that bioacoustics can be used to readily separate both taxa despite extensive intraspecific variability in their echolocation across the Amazon. Given the relative lack of barriers preventing contact between bat populations from the Central Amazon and French Guiana, the documented acoustic variation needs to be further studied in geographically intermediate locations to understand the potential isolation processes that could be causing the described divergence in echolocation and to determine whether this variation is either discrete or continuous
    • …
    corecore